Skip to main content
Erschienen in: Journal of Electronic Materials 6/2023

13.04.2023 | Original Research Article

Synthesis of Mesoporous Rod-Like MnC2O4/MWCNT Composite Anode Material for Lithium-Ion Batteries

verfasst von: Fang-Fei Xing, Xin-Yi Huang, Yi-Xin He, Dan-Dan Zeng, Xiao-Pan Chen, Li-Xue Lu, Jing Su, Xiao-Yan Lv, Yun-Fei Long, Yan-Xuan Wen

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

MnC2O4 is a promising anode material for Li-ion batteries. However, MnC2O4 suffers from poor performance due to its low conductivity and volume change in cycles. Herein, a strategy based on the surface charge and flexibility of multiwalled carbon nanotubes (MWCNT) was developed to improve the performance of MnC2O4, and a rod-like mesoporous MnC2O4/MWCNT composite was prepared via simple precipitation in water. The [Mn(H2O)n]2+–MWCNT complex was formed through electrostatic attraction between [Mn(H2O)n]2+ and the surface charge of MWCNT, which acted as the nucleation site of the manganese oxalate rod. The flexibility of the MWCNT allowed it to curl and twine in the rod and wrap over the surface of the rod. Introducing MWCNT created abundant mesopores and a three-dimensional conductive network. This prepared composite delivered capacity of 1004 mA h/g and 983 mA h/g after 600 cycles at 2 A/g and 5 A/g, respectively. As a comparison, the capacity of the MnC2O4 rod without MWCNT was only 345 mA h/g and 270 mA h/g under the same conditions. The excellent performance of the MnC2O4/MWCNT composite can be ascribed to the abundant mesoporous structure and 3D conductivity network created by MWCNT, which enhance the conductivity, accelerate electrode kinetics, and alleviate the volume change in cycles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Larcher and J. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19 (2015).CrossRef D. Larcher and J. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19 (2015).CrossRef
2.
Zurück zum Zitat J. Duan, X. Tang, H. Dai, Y. Yang, W. Wu, X. Wei, and Y. Huang, Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3, 1 (2020).CrossRef J. Duan, X. Tang, H. Dai, Y. Yang, W. Wu, X. Wei, and Y. Huang, Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3, 1 (2020).CrossRef
3.
Zurück zum Zitat A. Tomaszewska, Z. Chu, X. Feng, S. O’Kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, Y. Li, S. Zheng, S. Vetterlein, M. Gao, J. Du, M. Parkes, M. Ouyang, M. Marinescu, G. Offer, and B. Wu, Lithium-ion battery fast charging: a review. Transportation 1, 100011 (2019). A. Tomaszewska, Z. Chu, X. Feng, S. O’Kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, Y. Li, S. Zheng, S. Vetterlein, M. Gao, J. Du, M. Parkes, M. Ouyang, M. Marinescu, G. Offer, and B. Wu, Lithium-ion battery fast charging: a review. Transportation 1, 100011 (2019).
4.
Zurück zum Zitat Y. Wu, E. Rahm, and R. Holze, Carbon anode materials for lithium ion batteries. J. Power Sources 114, 228 (2003).CrossRef Y. Wu, E. Rahm, and R. Holze, Carbon anode materials for lithium ion batteries. J. Power Sources 114, 228 (2003).CrossRef
5.
Zurück zum Zitat V. Aravindan, Y. Lee, and S. Madhavi, Research progress on negative electrodes for practical li-ion batteries: beyond carbonaceous anodes. Adv. Energy Mater. 5, 1402225 (2015).CrossRef V. Aravindan, Y. Lee, and S. Madhavi, Research progress on negative electrodes for practical li-ion batteries: beyond carbonaceous anodes. Adv. Energy Mater. 5, 1402225 (2015).CrossRef
6.
Zurück zum Zitat H. Cheng, J.G. Shapter, Y. Li, and G. Gao, Recent progress of advanced anode materials of lithium-ion batteries. J. Energy Chem. 57, 451 (2021).CrossRef H. Cheng, J.G. Shapter, Y. Li, and G. Gao, Recent progress of advanced anode materials of lithium-ion batteries. J. Energy Chem. 57, 451 (2021).CrossRef
7.
Zurück zum Zitat G. Gao, Q. Wang, L. Zhang, D. Cui, and Y. Yao, Metal oxalate-based anode materials: a new choice for energy storage materials applied in metal ion batteries. Prog. Chem. 34, 434 (2022). G. Gao, Q. Wang, L. Zhang, D. Cui, and Y. Yao, Metal oxalate-based anode materials: a new choice for energy storage materials applied in metal ion batteries. Prog. Chem. 34, 434 (2022).
8.
Zurück zum Zitat Q. He, H. Wang, X. Zhao, and L. Chen, Recent advances of transition metal oxalate-based micro-and nanomaterials for electrochemical energy storage: a review. Mater. Today Chem. 22, 100564 (2021).CrossRef Q. He, H. Wang, X. Zhao, and L. Chen, Recent advances of transition metal oxalate-based micro-and nanomaterials for electrochemical energy storage: a review. Mater. Today Chem. 22, 100564 (2021).CrossRef
9.
Zurück zum Zitat K. Zhang, D. Zhang, Y. Li, L. Wang, F. Liang, Y. Dai, and Y. Yao, FeC2O4@Fe2O3/rGO composites with a novel interfacial characteristic and enhanced ultrastable lithium storage performance. Appl. Surf. Sci. 507, 145051 (2020).CrossRef K. Zhang, D. Zhang, Y. Li, L. Wang, F. Liang, Y. Dai, and Y. Yao, FeC2O4@Fe2O3/rGO composites with a novel interfacial characteristic and enhanced ultrastable lithium storage performance. Appl. Surf. Sci. 507, 145051 (2020).CrossRef
10.
Zurück zum Zitat K. Zhang, Y. Li, Y. Wang, J. Zhao, X. Chen, Y. Dai, and Y. Yao, Enhanced electrochemical properties of iron oxalate with more stable li+ ions diffusion channels by controlling polymorphic structure. Chem. Eng. J. 384, 123281 (2020).CrossRef K. Zhang, Y. Li, Y. Wang, J. Zhao, X. Chen, Y. Dai, and Y. Yao, Enhanced electrochemical properties of iron oxalate with more stable li+ ions diffusion channels by controlling polymorphic structure. Chem. Eng. J. 384, 123281 (2020).CrossRef
11.
Zurück zum Zitat Z. Qi, Y. Wu, X. Li, Y. Qu, Y. Yang, and D. Mei, Microwave-assisted synthesis of CuC2O4·xH2O for anode materials in lithium-ion batteries with a high capacity. Ionics 26, 33 (2020).CrossRef Z. Qi, Y. Wu, X. Li, Y. Qu, Y. Yang, and D. Mei, Microwave-assisted synthesis of CuC2O4·xH2O for anode materials in lithium-ion batteries with a high capacity. Ionics 26, 33 (2020).CrossRef
12.
Zurück zum Zitat K. Zhang, Y. Li, X. Hu, F. Liang, L. Wang, R. Xu, Y. Dai, and Y. Yao, Inhibitive role of crystal water on lithium storage for multilayer FeC2O4·xH2O anode materials. Chem. Eng. J. 404, 126464 (2021).CrossRef K. Zhang, Y. Li, X. Hu, F. Liang, L. Wang, R. Xu, Y. Dai, and Y. Yao, Inhibitive role of crystal water on lithium storage for multilayer FeC2O4·xH2O anode materials. Chem. Eng. J. 404, 126464 (2021).CrossRef
13.
Zurück zum Zitat K. Zhang, R. Xu, R. Wei, Y. Li, Y. Wang, Y. Zhang, Y. Dai, and Y. Yao, Tunable polymorph and morphology synthesis of iron oxalate nanoparticles as anode materials for lithium ion batteries. Mater. Chem. Phys. 243, 122676 (2020).CrossRef K. Zhang, R. Xu, R. Wei, Y. Li, Y. Wang, Y. Zhang, Y. Dai, and Y. Yao, Tunable polymorph and morphology synthesis of iron oxalate nanoparticles as anode materials for lithium ion batteries. Mater. Chem. Phys. 243, 122676 (2020).CrossRef
14.
Zurück zum Zitat Y. Zhang, C. Wang, Y. Dong, R. Wei, and J. Zhang, Understanding the high-performance anode material of CoC2O4·2 H2O microrods wrapped by reduced graphene oxide for lithium-ion and sodium-ion batteries. Chemistry 27, 993 (2021).CrossRef Y. Zhang, C. Wang, Y. Dong, R. Wei, and J. Zhang, Understanding the high-performance anode material of CoC2O4·2 H2O microrods wrapped by reduced graphene oxide for lithium-ion and sodium-ion batteries. Chemistry 27, 993 (2021).CrossRef
15.
Zurück zum Zitat M.C. López, J.L. Tirado, and C. Pérez Vicente, Structural and comparative electrochemical study of M(II) oxalates, M = Mn, Fe Co, Ni, Cu, Zn. J. Power Sources 227, 65 (2013).CrossRef M.C. López, J.L. Tirado, and C. Pérez Vicente, Structural and comparative electrochemical study of M(II) oxalates, M = Mn, Fe Co, Ni, Cu, Zn. J. Power Sources 227, 65 (2013).CrossRef
16.
Zurück zum Zitat Y. Zhang, Z. Lu, M. Guo, Z. Bai, and B. Tang, Porous CoC2O4 nanorods as high performance anode material for lithium ion batteries. JOM 68, 2952 (2016).CrossRef Y. Zhang, Z. Lu, M. Guo, Z. Bai, and B. Tang, Porous CoC2O4 nanorods as high performance anode material for lithium ion batteries. JOM 68, 2952 (2016).CrossRef
17.
Zurück zum Zitat W.A. Ang, N. Gupta, R. Prasanth, and S. Madhavi, High-performing mesoporous iron oxalate anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 4, 7011 (2012).CrossRef W.A. Ang, N. Gupta, R. Prasanth, and S. Madhavi, High-performing mesoporous iron oxalate anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 4, 7011 (2012).CrossRef
18.
Zurück zum Zitat W.A. Ang, Y.L. Cheah, C.L. Wong, R. Prasanth, H.H. Hng, and S. Madhavi, Mesoporous cobalt oxalate nanostructures as high-performance anode materials for lithium-ion batteries: ex situ electrochemical mechanistic study. J. Phys. Chem. C 117, 16316 (2013).CrossRef W.A. Ang, Y.L. Cheah, C.L. Wong, R. Prasanth, H.H. Hng, and S. Madhavi, Mesoporous cobalt oxalate nanostructures as high-performance anode materials for lithium-ion batteries: ex situ electrochemical mechanistic study. J. Phys. Chem. C 117, 16316 (2013).CrossRef
19.
Zurück zum Zitat Y. Yang, L. He, J. Lu, Z. Liu, N. Wang, J. Su, Y. Long, X. Lv, and Y. Wen, Rapid assemble of MnC2O4 microtubes using a microchannel reactor and their use as an anode material for lithium-ion batteries. Electrochim. Acta 321, 134673 (2019).CrossRef Y. Yang, L. He, J. Lu, Z. Liu, N. Wang, J. Su, Y. Long, X. Lv, and Y. Wen, Rapid assemble of MnC2O4 microtubes using a microchannel reactor and their use as an anode material for lithium-ion batteries. Electrochim. Acta 321, 134673 (2019).CrossRef
20.
Zurück zum Zitat J. Park, J. Jo, H. Yashiro, S. Kim, S. Kim, Y. Sun, and S. Myung, Synthesis and electrochemical reaction of tin oxalate-reduced graphene oxide composite anode for rechargeable lithium batteries. ACS Appl. Mater. Interfaces 9, 25941 (2017).CrossRef J. Park, J. Jo, H. Yashiro, S. Kim, S. Kim, Y. Sun, and S. Myung, Synthesis and electrochemical reaction of tin oxalate-reduced graphene oxide composite anode for rechargeable lithium batteries. ACS Appl. Mater. Interfaces 9, 25941 (2017).CrossRef
21.
Zurück zum Zitat W. Zhu, K. Kierzek, S. Wang, S. Li, R. Holze, and X. Chen, Improved performance in lithium ion battery of CNT-Fe3O4@graphene induced by three-dimensional structured construction. Colloids Surf. A 612, 126014 (2021).CrossRef W. Zhu, K. Kierzek, S. Wang, S. Li, R. Holze, and X. Chen, Improved performance in lithium ion battery of CNT-Fe3O4@graphene induced by three-dimensional structured construction. Colloids Surf. A 612, 126014 (2021).CrossRef
22.
Zurück zum Zitat X. Liu, Z.D. Huang, S.W. Oh, B. Zhang, P. Ma, M.M.F. Yuen, and J. Kim, Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos. Sci. Technol. 72, 121 (2012).CrossRef X. Liu, Z.D. Huang, S.W. Oh, B. Zhang, P. Ma, M.M.F. Yuen, and J. Kim, Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos. Sci. Technol. 72, 121 (2012).CrossRef
23.
Zurück zum Zitat K. Zhang, G. Gao, Y. Li, Y. Wang, R. Xu, Y. Dai, and Y. Yao, Ferrous-cupric oxalate hydrate combined with multiwalled carbon nanotubes composite anodes for lithium-ion batteries. Mater. Lett. 266, 127476 (2020).CrossRef K. Zhang, G. Gao, Y. Li, Y. Wang, R. Xu, Y. Dai, and Y. Yao, Ferrous-cupric oxalate hydrate combined with multiwalled carbon nanotubes composite anodes for lithium-ion batteries. Mater. Lett. 266, 127476 (2020).CrossRef
24.
Zurück zum Zitat X. Guo, Z. Sun, H. Ge, Q. Zhao, T. Shang, Y. Tian, and X. Song, MnOx bound on oxidized multi-walled carbon nanotubes as anode for lithium-ion batteries. Chem. Eng. J. 426, 131335 (2021).CrossRef X. Guo, Z. Sun, H. Ge, Q. Zhao, T. Shang, Y. Tian, and X. Song, MnOx bound on oxidized multi-walled carbon nanotubes as anode for lithium-ion batteries. Chem. Eng. J. 426, 131335 (2021).CrossRef
25.
Zurück zum Zitat W. Wu, T. Tang, Y. Li, and S. Xu, Versatile oxalato-bridging modes: a novel three-dimensional framework structure of manganese(II) oxalate complex [MnC2O4]·0.5H2O and the relationship with other manganese(II) oxalates. Dalton Trans. 50, 485 (2021).CrossRef W. Wu, T. Tang, Y. Li, and S. Xu, Versatile oxalato-bridging modes: a novel three-dimensional framework structure of manganese(II) oxalate complex [MnC2O4]·0.5H2O and the relationship with other manganese(II) oxalates. Dalton Trans. 50, 485 (2021).CrossRef
26.
Zurück zum Zitat S. Ruan, C. Ma, J. Wang, W. Qiao, and L. Ling, Facile synthesis of graphene-wrapped porous MnCO3 microspheres with enhanced surface capacitive effects for superior lithium storage. Chem. Eng. J. 367, 64 (2019).CrossRef S. Ruan, C. Ma, J. Wang, W. Qiao, and L. Ling, Facile synthesis of graphene-wrapped porous MnCO3 microspheres with enhanced surface capacitive effects for superior lithium storage. Chem. Eng. J. 367, 64 (2019).CrossRef
27.
Zurück zum Zitat S.P. Chenakin, S.A. Alekseev, and N. Kruse, X-ray photoelectron spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy insight into the pathways of manganese oxalate thermal decomposition to MnO and MnCO3. Inorg. Chem. 61, 12106 (2022).CrossRef S.P. Chenakin, S.A. Alekseev, and N. Kruse, X-ray photoelectron spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy insight into the pathways of manganese oxalate thermal decomposition to MnO and MnCO3. Inorg. Chem. 61, 12106 (2022).CrossRef
28.
Zurück zum Zitat L. Ren, P. Wang, Y. Han, C. Hu, and B. Wei, Synthesis of CoC2O4·2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles. Chem. Phys. Lett. 476, 78 (2009).CrossRef L. Ren, P. Wang, Y. Han, C. Hu, and B. Wei, Synthesis of CoC2O4·2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles. Chem. Phys. Lett. 476, 78 (2009).CrossRef
29.
Zurück zum Zitat D. Wang, Q. Wang, and T. Wang, Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Inorg. Chem. 50, 6482 (2011).CrossRef D. Wang, Q. Wang, and T. Wang, Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Inorg. Chem. 50, 6482 (2011).CrossRef
30.
Zurück zum Zitat Z.P. Xu and H.C. Zeng, Control of surface area and porosity of Co3O4 via intercalation of oxidative or nonoxidative anions in hydrotalcite-like precursors. Chem. Mat. 12, 3459 (2000).CrossRef Z.P. Xu and H.C. Zeng, Control of surface area and porosity of Co3O4 via intercalation of oxidative or nonoxidative anions in hydrotalcite-like precursors. Chem. Mat. 12, 3459 (2000).CrossRef
31.
Zurück zum Zitat Z. Wang, X. He, and D. Sun, Practical Infrared Spectroscopy, 2nd ed., (Beijingg: Petroleum Industry Press, 1990). Z. Wang, X. He, and D. Sun, Practical Infrared Spectroscopy, 2nd ed., (Beijingg: Petroleum Industry Press, 1990).
32.
Zurück zum Zitat H.N. Hareesh, K.U. Minchitha, N. Nagaraju, and N. Kathyayini, Catalytic role of Cu(I) species in Cu2O/CuI supported on MWCNTs in the oxidative amidation of aryl aldehydes with 2-aminopyridines. Chin. J. Catal. 36, 1825 (2015).CrossRef H.N. Hareesh, K.U. Minchitha, N. Nagaraju, and N. Kathyayini, Catalytic role of Cu(I) species in Cu2O/CuI supported on MWCNTs in the oxidative amidation of aryl aldehydes with 2-aminopyridines. Chin. J. Catal. 36, 1825 (2015).CrossRef
33.
Zurück zum Zitat C. Jo, J.H. Jo, J.U. Choi, H. Yashiro, H. Kim, and S. Myung, Oxalate-based high-capacity conversion anode for potassium storage. ACS Sustain. Chem. Eng. 8, 3743 (2020).CrossRef C. Jo, J.H. Jo, J.U. Choi, H. Yashiro, H. Kim, and S. Myung, Oxalate-based high-capacity conversion anode for potassium storage. ACS Sustain. Chem. Eng. 8, 3743 (2020).CrossRef
34.
Zurück zum Zitat Q. Zhang, Y. Hu, J. Wang, and F. Pan, CuCo2S4/CuS@MWCNTs composite as a cathode for rechargeable magnesium-ion batteries with long cycle life. J. Phys. Chem. C 125, 19673 (2021).CrossRef Q. Zhang, Y. Hu, J. Wang, and F. Pan, CuCo2S4/CuS@MWCNTs composite as a cathode for rechargeable magnesium-ion batteries with long cycle life. J. Phys. Chem. C 125, 19673 (2021).CrossRef
35.
Zurück zum Zitat Z. Ruiting, C. Guoan, Z. Yong, and L. Huaping, A comparative Raman study of carbon nanotubes allays. Spectrosc. Spectr. Anal. 26, 1071 (2006). Z. Ruiting, C. Guoan, Z. Yong, and L. Huaping, A comparative Raman study of carbon nanotubes allays. Spectrosc. Spectr. Anal. 26, 1071 (2006).
36.
Zurück zum Zitat X. Pei, D. Mo, S. Lyu, J. Zhang, and Y. Fu, Synthesis of MnCO3/multiwalled carbon nanotube composite as anode material for lithium-ion batteries. J. Nanosci. Nanotechnol. 19, 5743 (2019).CrossRef X. Pei, D. Mo, S. Lyu, J. Zhang, and Y. Fu, Synthesis of MnCO3/multiwalled carbon nanotube composite as anode material for lithium-ion batteries. J. Nanosci. Nanotechnol. 19, 5743 (2019).CrossRef
37.
Zurück zum Zitat Q. Li, G. Zhu, Y. Zhao, K. Pei, and R. Che, NixMnyCozO nanowire/CNT composite microspheres with 3d interconnected conductive network structure via spray-drying method: a high-capacity and long-cycle-life anode material for lithium-ion batteries. Small 15, 1900069 (2019).CrossRef Q. Li, G. Zhu, Y. Zhao, K. Pei, and R. Che, NixMnyCozO nanowire/CNT composite microspheres with 3d interconnected conductive network structure via spray-drying method: a high-capacity and long-cycle-life anode material for lithium-ion batteries. Small 15, 1900069 (2019).CrossRef
38.
Zurück zum Zitat K. Zhang, F. Liang, Y. Wang, Y. Dai, and Y. Yao, Multilayer iron oxalate with a mesoporous nanostructure as a high-performance anode material for lithium-ion batteries. J. Alloys Compd. 779, 91 (2019).CrossRef K. Zhang, F. Liang, Y. Wang, Y. Dai, and Y. Yao, Multilayer iron oxalate with a mesoporous nanostructure as a high-performance anode material for lithium-ion batteries. J. Alloys Compd. 779, 91 (2019).CrossRef
39.
Zurück zum Zitat W.A.E. Ang, Y.L. Cheah, C.L. Wong, H.H. Hng, and S. Madhavi, One-pot solvothermal synthesis of Co1−xMnxC2O4 and their application as anode materials for lithium-ion batteries. J. Alloys Compd. 638, 324 (2015).CrossRef W.A.E. Ang, Y.L. Cheah, C.L. Wong, H.H. Hng, and S. Madhavi, One-pot solvothermal synthesis of Co1−xMnxC2O4 and their application as anode materials for lithium-ion batteries. J. Alloys Compd. 638, 324 (2015).CrossRef
40.
Zurück zum Zitat Z. Ju, G. Ma, Y. Zhao, Z. Xing, Y. Qiang, and Y. Qian, A facile method for synthesis of porous NiCo2O4 nanorods as a high-performance anode material for li-ion batteries. Part. Part. Syst. Charact. 32, 1012 (2015).CrossRef Z. Ju, G. Ma, Y. Zhao, Z. Xing, Y. Qiang, and Y. Qian, A facile method for synthesis of porous NiCo2O4 nanorods as a high-performance anode material for li-ion batteries. Part. Part. Syst. Charact. 32, 1012 (2015).CrossRef
41.
Zurück zum Zitat S. Zheng, J. Hu, L. Zhong, W. Song, L. Wan, and Y. Guo, Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries. Chem. Mater. 20, 3617 (2008).CrossRef S. Zheng, J. Hu, L. Zhong, W. Song, L. Wan, and Y. Guo, Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries. Chem. Mater. 20, 3617 (2008).CrossRef
42.
Zurück zum Zitat Y. Zhang, L. Xue, Y. Zhang, J. Su, Y. Long, X. Lü, and Y. Wen, Synthesis and electrochemical performance of mesoporous MnC2O4 nanorod/rGO composite anode for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 32, 15069 (2021).CrossRef Y. Zhang, L. Xue, Y. Zhang, J. Su, Y. Long, X. Lü, and Y. Wen, Synthesis and electrochemical performance of mesoporous MnC2O4 nanorod/rGO composite anode for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 32, 15069 (2021).CrossRef
43.
Zurück zum Zitat M. Muttakin, S. Mitra, K. Thu, K. Ito, and B.B. Saha, Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms. Int. J. Heat Mass Transf. 122, 795 (2018).CrossRef M. Muttakin, S. Mitra, K. Thu, K. Ito, and B.B. Saha, Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms. Int. J. Heat Mass Transf. 122, 795 (2018).CrossRef
44.
Zurück zum Zitat J. Xu, L. He, H. Liu, T. Han, Y. Wang, C. Zhang, and Y. Zhang, Controlled synthesis of porous anhydrous cobalt oxalate nanorods with high reversible capacity and excellent cycling stability. Electrochim. Acta 170, 85 (2015).CrossRef J. Xu, L. He, H. Liu, T. Han, Y. Wang, C. Zhang, and Y. Zhang, Controlled synthesis of porous anhydrous cobalt oxalate nanorods with high reversible capacity and excellent cycling stability. Electrochim. Acta 170, 85 (2015).CrossRef
45.
Zurück zum Zitat N. Li, Q. Li, X. Guo, M. Yuan, and H. Pang, Controllable synthesis of oxalate and oxalate-derived nanomaterials for applications in electrochemistry. Chem. Eng. J. 372, 551 (2019).CrossRef N. Li, Q. Li, X. Guo, M. Yuan, and H. Pang, Controllable synthesis of oxalate and oxalate-derived nanomaterials for applications in electrochemistry. Chem. Eng. J. 372, 551 (2019).CrossRef
46.
Zurück zum Zitat Z. Chen, J. Liu, C. Pu, X. Li, and Y. Bai, Surfactant-assisted multi-walled carbon nanotubes dispersion: Mechanism and properties evaluation. Fine Chem. 39, 269 (2022). Z. Chen, J. Liu, C. Pu, X. Li, and Y. Bai, Surfactant-assisted multi-walled carbon nanotubes dispersion: Mechanism and properties evaluation. Fine Chem. 39, 269 (2022).
47.
Zurück zum Zitat Y. Jia, A. Cheng, W. Ke, J. Liu, S. Wang, Y. Zhao, Q. Yang, and J. Zhang, Hierarchical structure constructed by manganese oxalate framework with accurate iron doping for ultra-efficient lithium storage. Electrochim. Acta 380, 138217 (2021).CrossRef Y. Jia, A. Cheng, W. Ke, J. Liu, S. Wang, Y. Zhao, Q. Yang, and J. Zhang, Hierarchical structure constructed by manganese oxalate framework with accurate iron doping for ultra-efficient lithium storage. Electrochim. Acta 380, 138217 (2021).CrossRef
48.
Zurück zum Zitat A. Van der Ven, J. Bhattacharya, and A.A. Belak, Understanding li diffusion in li-intercalation compounds. Accounts Chem. Res. 46, 1216 (2013).CrossRef A. Van der Ven, J. Bhattacharya, and A.A. Belak, Understanding li diffusion in li-intercalation compounds. Accounts Chem. Res. 46, 1216 (2013).CrossRef
49.
Zurück zum Zitat J. Song, Y. Ji, Y. Li, R. Tong, Q. Tian, J. Chen, and Z. Chen, Porous carbon with carbon nanotube scaffold for embedding Cu2O/Cu nanoparticles towards high lithium storage. Chem. Phys. Lett. 780, 138934 (2021).CrossRef J. Song, Y. Ji, Y. Li, R. Tong, Q. Tian, J. Chen, and Z. Chen, Porous carbon with carbon nanotube scaffold for embedding Cu2O/Cu nanoparticles towards high lithium storage. Chem. Phys. Lett. 780, 138934 (2021).CrossRef
50.
Zurück zum Zitat Z. Ma, R. Zheng, Y. Liu, Y. Ying, and W. Shi, Carbon nanotubes interpenetrating MOFs-derived Co-Ni-S composite spheres with interconnected architecture for high performance hybrid supercapacitor. J. Colloid Interface Sci. 602, 627 (2021).CrossRef Z. Ma, R. Zheng, Y. Liu, Y. Ying, and W. Shi, Carbon nanotubes interpenetrating MOFs-derived Co-Ni-S composite spheres with interconnected architecture for high performance hybrid supercapacitor. J. Colloid Interface Sci. 602, 627 (2021).CrossRef
51.
Zurück zum Zitat G. Fang, A hybrid Si@C@CNT@C anode by anchoring silicon nanoparticles onto CNT for enhancing performance in lithium ion battery. Int. J. Electrochem. Sci. 10, 1580 (2019).CrossRef G. Fang, A hybrid Si@C@CNT@C anode by anchoring silicon nanoparticles onto CNT for enhancing performance in lithium ion battery. Int. J. Electrochem. Sci. 10, 1580 (2019).CrossRef
52.
Zurück zum Zitat X. Wu, J. Guo, M.J. McDonald, S. Li, B. Xu, and Y. Yang, Synthesis and characterization of urchin-like Mn0.33Co0.67C2O4 for Li-ion batteries: role of SEI layers for enhanced electrochemical properties. Electrochim. Acta 163, 93 (2015).CrossRef X. Wu, J. Guo, M.J. McDonald, S. Li, B. Xu, and Y. Yang, Synthesis and characterization of urchin-like Mn0.33Co0.67C2O4 for Li-ion batteries: role of SEI layers for enhanced electrochemical properties. Electrochim. Acta 163, 93 (2015).CrossRef
53.
Zurück zum Zitat B. León, C.P. Vicente, and J.L. Tirado, New mixed transition metal oxysalts as negative electrode materials for lithium-ion batteries. Solid State Ion. 225, 518 (2012).CrossRef B. León, C.P. Vicente, and J.L. Tirado, New mixed transition metal oxysalts as negative electrode materials for lithium-ion batteries. Solid State Ion. 225, 518 (2012).CrossRef
54.
Zurück zum Zitat P. Simon, Y. Gogotsi, and B. Dunn, Materials science. Where do batteries end and supercapacitors begin? Science 343, 1210 (2014).CrossRef P. Simon, Y. Gogotsi, and B. Dunn, Materials science. Where do batteries end and supercapacitors begin? Science 343, 1210 (2014).CrossRef
55.
Zurück zum Zitat G.A. Muller, J.B. Cook, H. Kim, S.H. Tolbert, and B. Dunn, High performance pseudocapacitor based on 2d layered metal chalcogenide nanocrystals. Nano Lett. 15, 1911 (2015).CrossRef G.A. Muller, J.B. Cook, H. Kim, S.H. Tolbert, and B. Dunn, High performance pseudocapacitor based on 2d layered metal chalcogenide nanocrystals. Nano Lett. 15, 1911 (2015).CrossRef
56.
Zurück zum Zitat X. Pu, D. Zhao, C. Fu, Z. Chen, S. Cao, C. Wang, and Y. Cao, Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem. Int. Ed. 60, 21310 (2021).CrossRef X. Pu, D. Zhao, C. Fu, Z. Chen, S. Cao, C. Wang, and Y. Cao, Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem. Int. Ed. 60, 21310 (2021).CrossRef
57.
Zurück zum Zitat Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, and J. Chen, Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8, 1309 (2015).CrossRef Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, and J. Chen, Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8, 1309 (2015).CrossRef
58.
Zurück zum Zitat T. Brezesinski, J. Wang, S.H. Tolbert, and B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146 (2010).CrossRef T. Brezesinski, J. Wang, S.H. Tolbert, and B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146 (2010).CrossRef
Metadaten
Titel
Synthesis of Mesoporous Rod-Like MnC2O4/MWCNT Composite Anode Material for Lithium-Ion Batteries
verfasst von
Fang-Fei Xing
Xin-Yi Huang
Yi-Xin He
Dan-Dan Zeng
Xiao-Pan Chen
Li-Xue Lu
Jing Su
Xiao-Yan Lv
Yun-Fei Long
Yan-Xuan Wen
Publikationsdatum
13.04.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10385-y

Weitere Artikel der Ausgabe 6/2023

Journal of Electronic Materials 6/2023 Zur Ausgabe

Neuer Inhalt