Skip to main content
Erschienen in: Journal of Electronic Materials 6/2023

07.04.2023 | Original Research Article

Synthesis and Electrochemical Performance of MnO2 Nanowires/Polyaniline Composite as Supercapacitor Electrode Material

verfasst von: Xiangxiang Du, Shujun Liu, Qin Xu, Xuejun Shi

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

MnO2 nanowires/polyaniline composite (MnO2NW/PANI) was prepared by combining one-dimensional MnO2 nanowires (MnO2NW) with conductive polymer PANI surface coating. The MnO2NW were synthesized via a one-pot facile hydrothermal method. The composite MnO2NW/PANI was then prepared by in situ polymerization of aniline monomer on the surface of MnO2NW. The MnO2NW/PANI was able to serve as electroactive material and demonstrated a specific capacitance of 306.7 F/g recorded at a current density is 0.5 A/g, which is 28.4% higher than that of pristine MnO2 (only 238.9 F/g). The reduced electric resistance within MnO2NW/PANI interconnection networks and the good synergistic effect between MnO2NW and PANI for fast ion/charge transfer supports the enhanced capacitance of the composite. In addition, the MnO2NW/PANI composite electrode shows stable cycle performance, with capacity retention of 88.7% after 5000 repeated cycles test at a high current density of 5 A/g. The constructed nanocomposites have great potential in the further development of high-performance electrochemical electrode materials for energy storage application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Zhang, H. Ying, P. Huang, J. Wang, Z. Zhang, T. Yang, and W.-Q. Han, Rational design of pillared SnS/Ti3C2Tx MXene for superior lithium-ion storage. ACS Nano 14, 17665 (2020).CrossRef S. Zhang, H. Ying, P. Huang, J. Wang, Z. Zhang, T. Yang, and W.-Q. Han, Rational design of pillared SnS/Ti3C2Tx MXene for superior lithium-ion storage. ACS Nano 14, 17665 (2020).CrossRef
2.
Zurück zum Zitat X. Yang, X. Li, K. Adair, H. Zhang, and X. Sun, Structural design of lithium–sulfur batteries: from fundamental research to practical application. Electrochem. Energy Rev. 1, 239 (2018).CrossRef X. Yang, X. Li, K. Adair, H. Zhang, and X. Sun, Structural design of lithium–sulfur batteries: from fundamental research to practical application. Electrochem. Energy Rev. 1, 239 (2018).CrossRef
3.
Zurück zum Zitat D.A. Cullen, K.C. Neyerlin, R.K. Ahluwalia, R. Mukundan, K.L. More, R.L. Borup, A.Z. Weber, D.J. Myers, and A. Kusoglu, New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462 (2021).CrossRef D.A. Cullen, K.C. Neyerlin, R.K. Ahluwalia, R. Mukundan, K.L. More, R.L. Borup, A.Z. Weber, D.J. Myers, and A. Kusoglu, New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462 (2021).CrossRef
4.
Zurück zum Zitat Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, and R.B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233 (2018).CrossRef Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, and R.B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233 (2018).CrossRef
5.
Zurück zum Zitat Q. Zhu, D. Zhao, M. Cheng, J. Zhou, K.A. Owusu, L. Mai, and Y. Yu, A new view of supercapacitors: integrated supercapacitors. Adv. Energy Mater. 9, 1901081 (2019).CrossRef Q. Zhu, D. Zhao, M. Cheng, J. Zhou, K.A. Owusu, L. Mai, and Y. Yu, A new view of supercapacitors: integrated supercapacitors. Adv. Energy Mater. 9, 1901081 (2019).CrossRef
6.
Zurück zum Zitat A. Velasco, Y.K. Ryu, A. Boscá, A. Ladrón-de-Guevara, E. Hunt, J. Zuo, J. Pedrós, F. Calle, and J. Martinez, Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustain. Energy Fuels 5, 1235 (2021).CrossRef A. Velasco, Y.K. Ryu, A. Boscá, A. Ladrón-de-Guevara, E. Hunt, J. Zuo, J. Pedrós, F. Calle, and J. Martinez, Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustain. Energy Fuels 5, 1235 (2021).CrossRef
7.
Zurück zum Zitat D.P. Dubal, N.R. Chodankar, Z. Caban-Huertas, F. Wolfart, M. Vidotti, R. Holze, C.D. Lokhande, and P. Gomez-Romero, Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors. J. Power Sources 308, 158 (2016).CrossRef D.P. Dubal, N.R. Chodankar, Z. Caban-Huertas, F. Wolfart, M. Vidotti, R. Holze, C.D. Lokhande, and P. Gomez-Romero, Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors. J. Power Sources 308, 158 (2016).CrossRef
8.
Zurück zum Zitat J. Yin, W. Zhang, N.A. Alhebshi, N. Salah, and H.N. Alshareef, Synthesis strategies of porous carbon for supercapacitor applications. Small Methods 4, 1900853 (2020).CrossRef J. Yin, W. Zhang, N.A. Alhebshi, N. Salah, and H.N. Alshareef, Synthesis strategies of porous carbon for supercapacitor applications. Small Methods 4, 1900853 (2020).CrossRef
9.
Zurück zum Zitat W. He, C. Wang, F. Zhuge, X. Deng, X. Xu, and T. Zhai, Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 35, 242 (2017).CrossRef W. He, C. Wang, F. Zhuge, X. Deng, X. Xu, and T. Zhai, Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 35, 242 (2017).CrossRef
10.
Zurück zum Zitat C. He, Y. Liang, P. Gao, L. Cheng, D. Shi, X. Xie, R.K.-Y. Li, and Y. Yang, Bioinspired Co3O4/graphene layered composite films as self-supported electrodes for supercapacitors. Compos. Part B-Eng. 121, 68 (2017).CrossRef C. He, Y. Liang, P. Gao, L. Cheng, D. Shi, X. Xie, R.K.-Y. Li, and Y. Yang, Bioinspired Co3O4/graphene layered composite films as self-supported electrodes for supercapacitors. Compos. Part B-Eng. 121, 68 (2017).CrossRef
11.
Zurück zum Zitat C. Dang, Q. Mu, X. Xie, X. Sun, X. Yang, Y. Zhang, S. Maganti, M. Huang, Q. Jiang, I. Seok, W. Du, and C. Hou, Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv. Compos. Hybrid Mater. 5, 606 (2022).CrossRef C. Dang, Q. Mu, X. Xie, X. Sun, X. Yang, Y. Zhang, S. Maganti, M. Huang, Q. Jiang, I. Seok, W. Du, and C. Hou, Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv. Compos. Hybrid Mater. 5, 606 (2022).CrossRef
12.
Zurück zum Zitat D. Wu, X. Xie, J. Zhang, Y. Ma, C. Hou, X. Sun, X. Yang, Y. Zhang, H. Kimura, and W. Du, Embedding NiS nanoflakes in electrospun carbon fibers containing NiS nanoparticles for hybrid supercapacitors. Chem. Eng. J. 446, 137262 (2022).CrossRef D. Wu, X. Xie, J. Zhang, Y. Ma, C. Hou, X. Sun, X. Yang, Y. Zhang, H. Kimura, and W. Du, Embedding NiS nanoflakes in electrospun carbon fibers containing NiS nanoparticles for hybrid supercapacitors. Chem. Eng. J. 446, 137262 (2022).CrossRef
13.
Zurück zum Zitat C.O. Baker, X. Huang, W. Nelson, and R.B. Kaner, Polyaniline nanofibers: broadening applications for conducting polymers. Chem. Soc. Rev. 46, 1510 (2017).CrossRef C.O. Baker, X. Huang, W. Nelson, and R.B. Kaner, Polyaniline nanofibers: broadening applications for conducting polymers. Chem. Soc. Rev. 46, 1510 (2017).CrossRef
14.
Zurück zum Zitat T. Li, X. Wang, P. Liu, B. Yang, S. Diao, and Y. Gao, Synthesis of graphene/polyaniline copolymer for solid-state supercapacitor. Electroanal. Chem. 860, 113908 (2020).CrossRef T. Li, X. Wang, P. Liu, B. Yang, S. Diao, and Y. Gao, Synthesis of graphene/polyaniline copolymer for solid-state supercapacitor. Electroanal. Chem. 860, 113908 (2020).CrossRef
15.
Zurück zum Zitat Q.-Z. Zhang, D. Zhang, Z.-C. Miao, X.-L. Zhang, and S.-L. Chou, Research progress in MnO2–carbon based supercapacitor electrode materials. Small 14, 1702883 (2018).CrossRef Q.-Z. Zhang, D. Zhang, Z.-C. Miao, X.-L. Zhang, and S.-L. Chou, Research progress in MnO2–carbon based supercapacitor electrode materials. Small 14, 1702883 (2018).CrossRef
16.
Zurück zum Zitat S. Wang, Y. Ren, G. Liu, Y. Xing, and S. Zhang, Peanut-like MnO@C core–shell composites as anode electrodes for high-performance lithium ion batteries. Nanoscale 6, 3508 (2014).CrossRef S. Wang, Y. Ren, G. Liu, Y. Xing, and S. Zhang, Peanut-like MnO@C core–shell composites as anode electrodes for high-performance lithium ion batteries. Nanoscale 6, 3508 (2014).CrossRef
17.
Zurück zum Zitat J. Li, S. Luo, G. Liu, J. Wan, J. Lu, B. Li, X. Han, and C. Hu, A high-performance asymmetric supercapacitor achieved by surface-regulated MnO2 and organic-framework-derived N-doped carbon cloth. Mater. Today Chem. 22, 100620 (2021).CrossRef J. Li, S. Luo, G. Liu, J. Wan, J. Lu, B. Li, X. Han, and C. Hu, A high-performance asymmetric supercapacitor achieved by surface-regulated MnO2 and organic-framework-derived N-doped carbon cloth. Mater. Today Chem. 22, 100620 (2021).CrossRef
18.
Zurück zum Zitat L. Zhang, T. Li, X. Ji, Z. Zhang, W. Yang, J. Gao, H. Li, C. Xiong, and A. Dang, Freestanding three-dimensional reduced graphene oxide/MnO2 on porous carbon/nickel foam as a designed hierarchical multihole supercapacitor electrode. Electrochim. Acta 252, 306 (2017).CrossRef L. Zhang, T. Li, X. Ji, Z. Zhang, W. Yang, J. Gao, H. Li, C. Xiong, and A. Dang, Freestanding three-dimensional reduced graphene oxide/MnO2 on porous carbon/nickel foam as a designed hierarchical multihole supercapacitor electrode. Electrochim. Acta 252, 306 (2017).CrossRef
19.
Zurück zum Zitat X. Chen, P. Liu, C. Liu, G. Liu, J. Wei, J. Xu, Q. Jiang, X. Liu, and F. Jiang, Microstructure control for high-capacitance polyaniline. Electrochim. Acta 391, 138977 (2021).CrossRef X. Chen, P. Liu, C. Liu, G. Liu, J. Wei, J. Xu, Q. Jiang, X. Liu, and F. Jiang, Microstructure control for high-capacitance polyaniline. Electrochim. Acta 391, 138977 (2021).CrossRef
20.
Zurück zum Zitat H. Xu, D. Zheng, F. Liu, W. Li, and J. Lin, Synthesis of an mxene/polyaniline composite with excellent electrochemical properties. J. Mater. Chem. A 8, 5853 (2020).CrossRef H. Xu, D. Zheng, F. Liu, W. Li, and J. Lin, Synthesis of an mxene/polyaniline composite with excellent electrochemical properties. J. Mater. Chem. A 8, 5853 (2020).CrossRef
21.
Zurück zum Zitat Y. Zhao, and C.-A. Wang, Nano-network MnO2/polyaniline composites with enhanced electrochemical properties for supercapacitors. Mater. Design 97, 512 (2016).CrossRef Y. Zhao, and C.-A. Wang, Nano-network MnO2/polyaniline composites with enhanced electrochemical properties for supercapacitors. Mater. Design 97, 512 (2016).CrossRef
22.
Zurück zum Zitat F. Hekmat, S. Shahrokhian, and N. Taghavinia, Ultralight flexible asymmetric supercapacitors based on manganese dioxide–polyaniline nanocomposite and reduced graphene oxide electrodes directly deposited on foldable cellulose papers. J. Phys. Chem. C 122, 27156 (2018).CrossRef F. Hekmat, S. Shahrokhian, and N. Taghavinia, Ultralight flexible asymmetric supercapacitors based on manganese dioxide–polyaniline nanocomposite and reduced graphene oxide electrodes directly deposited on foldable cellulose papers. J. Phys. Chem. C 122, 27156 (2018).CrossRef
23.
Zurück zum Zitat Y. Huang, S. Bao, and J. Lu, Flower-like MnO2/polyaniline/hollow mesoporous silica as electrode for high-performance all-solid-state supercapacitors. J. Alloys Compd. 845, 156192 (2020).CrossRef Y. Huang, S. Bao, and J. Lu, Flower-like MnO2/polyaniline/hollow mesoporous silica as electrode for high-performance all-solid-state supercapacitors. J. Alloys Compd. 845, 156192 (2020).CrossRef
24.
Zurück zum Zitat S. Shivakumara and N. Munichandraiah, In-situ preparation of nanostructured α-MnO2/polypyrrole hybrid composite electrode materials for high performance supercapacitor. J. Alloys Compd. 787, 1044 (2019).CrossRef S. Shivakumara and N. Munichandraiah, In-situ preparation of nanostructured α-MnO2/polypyrrole hybrid composite electrode materials for high performance supercapacitor. J. Alloys Compd. 787, 1044 (2019).CrossRef
25.
Zurück zum Zitat R.A. Davoglio, G. Cabello, J.F. Marco, and S.R. Biaggio, Synthesis and characterization of α-MnO2 nanoneedles for electrochemical supercapacitors. Electrochimi. Acta 261, 428 (2018).CrossRef R.A. Davoglio, G. Cabello, J.F. Marco, and S.R. Biaggio, Synthesis and characterization of α-MnO2 nanoneedles for electrochemical supercapacitors. Electrochimi. Acta 261, 428 (2018).CrossRef
26.
Zurück zum Zitat N. Jabeen, Q. Xia, S.V. Savilov, S.M. Aldoshin, Y. Yu, and H. Xia, Enhanced pseudocapacitive performance of α-MnO2 by cation preinsertion. ACS Appl. Mater. Interface 8, 33732 (2016).CrossRef N. Jabeen, Q. Xia, S.V. Savilov, S.M. Aldoshin, Y. Yu, and H. Xia, Enhanced pseudocapacitive performance of α-MnO2 by cation preinsertion. ACS Appl. Mater. Interface 8, 33732 (2016).CrossRef
27.
Zurück zum Zitat Z. Lv, Y. Luo, Y. Tang, J. Wei, Z. Zhu, X. Zhou, W. Li, Y. Zeng, W. Zhang, Y. Zhang, D. Qi, S. Pan, X.J. Loh, and X. Chen, Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv. Mater. 30, 1704531 (2018).CrossRef Z. Lv, Y. Luo, Y. Tang, J. Wei, Z. Zhu, X. Zhou, W. Li, Y. Zeng, W. Zhang, Y. Zhang, D. Qi, S. Pan, X.J. Loh, and X. Chen, Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv. Mater. 30, 1704531 (2018).CrossRef
28.
Zurück zum Zitat M. Gandara, and E.S. Gonçalves, Polyaniline supercapacitor electrode and carbon fiber graphene oxide: electroactive properties at the charging limit. Electrochim. Acta 345, 136197 (2020).CrossRef M. Gandara, and E.S. Gonçalves, Polyaniline supercapacitor electrode and carbon fiber graphene oxide: electroactive properties at the charging limit. Electrochim. Acta 345, 136197 (2020).CrossRef
29.
Zurück zum Zitat Y. Sun, J. Zheng, Y. Yang, J. Zhao, J. Rong, H. Li, and L. Niu, Design advanced porous polyaniline-PEDOT: PSS composite as high performance cathode for sodium ion batteries. Compos. Commun. 24, 100674 (2021).CrossRef Y. Sun, J. Zheng, Y. Yang, J. Zhao, J. Rong, H. Li, and L. Niu, Design advanced porous polyaniline-PEDOT: PSS composite as high performance cathode for sodium ion batteries. Compos. Commun. 24, 100674 (2021).CrossRef
30.
Zurück zum Zitat X. Du, F. Luo, Y. Guo, Q. Zhu, F. Xiao, K. Wu, and M. Lu, Fabrication of graphene/single wall carbon nanotubes/polyaniline composite gels as binder-free electrode materials. J. Appl. Polym. Sci. 136, 46948 (2019).CrossRef X. Du, F. Luo, Y. Guo, Q. Zhu, F. Xiao, K. Wu, and M. Lu, Fabrication of graphene/single wall carbon nanotubes/polyaniline composite gels as binder-free electrode materials. J. Appl. Polym. Sci. 136, 46948 (2019).CrossRef
31.
Zurück zum Zitat C. Pan, H. Gu, and L. Dong, Synthesis and electrochemical performance of polyaniline@ MnO2/graphene ternary composites for electrochemical supercapacitors. J. Power Sources 303, 175 (2016).CrossRef C. Pan, H. Gu, and L. Dong, Synthesis and electrochemical performance of polyaniline@ MnO2/graphene ternary composites for electrochemical supercapacitors. J. Power Sources 303, 175 (2016).CrossRef
32.
Zurück zum Zitat W. Zhang, Y. Kong, X. Jin, B. Yan, G. Diao, and Y. Piao, Supramolecule-assisted synthesis of cyclodextrin polymer functionalized polyaniline/carbon nanotube with core-shell nanostructure as high-performance supercapacitor material. Electrochimi. Acta 331, 135345 (2020).CrossRef W. Zhang, Y. Kong, X. Jin, B. Yan, G. Diao, and Y. Piao, Supramolecule-assisted synthesis of cyclodextrin polymer functionalized polyaniline/carbon nanotube with core-shell nanostructure as high-performance supercapacitor material. Electrochimi. Acta 331, 135345 (2020).CrossRef
33.
Zurück zum Zitat P. Yu, X. Zhao, Z. Huang, Y. Li, and Q. Zhang, Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors. J. Mater. Chem. A 2, 14413 (2014).CrossRef P. Yu, X. Zhao, Z. Huang, Y. Li, and Q. Zhang, Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors. J. Mater. Chem. A 2, 14413 (2014).CrossRef
34.
Zurück zum Zitat X. Lu, J. Zhu, W. Wu, and B. Zhang, Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochim. Acta 228, 282 (2017).CrossRef X. Lu, J. Zhu, W. Wu, and B. Zhang, Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochim. Acta 228, 282 (2017).CrossRef
35.
Zurück zum Zitat W. Yang, D. Peng, H. Kimura, X. Zhang, X. Sun, R.A. Pashameah, E. Alzahrani, B. Wang, Z. Guo, W. Du, and C. Hou, Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv. Compos. Hybrid Mater. 5, 3146 (2022).CrossRef W. Yang, D. Peng, H. Kimura, X. Zhang, X. Sun, R.A. Pashameah, E. Alzahrani, B. Wang, Z. Guo, W. Du, and C. Hou, Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv. Compos. Hybrid Mater. 5, 3146 (2022).CrossRef
36.
Zurück zum Zitat C. Hou, W. Yang, X. Xie, X. Sun, J. Wang, N. Naik, D. Pan, X. Mai, Z. Guo, F. Dang, and W. Du, Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J. Colloid Interface Sci. 596, 396 (2021).CrossRef C. Hou, W. Yang, X. Xie, X. Sun, J. Wang, N. Naik, D. Pan, X. Mai, Z. Guo, F. Dang, and W. Du, Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J. Colloid Interface Sci. 596, 396 (2021).CrossRef
37.
Zurück zum Zitat Y. Hu, X. Tong, H. Zhuo, L. Zhong, and X. Peng, Biomass-based porous N-self-doped carbon framework/polyaniline composite with outstanding supercapacitance. ACS Sustain. Chem. Eng. 5, 8663 (2017).CrossRef Y. Hu, X. Tong, H. Zhuo, L. Zhong, and X. Peng, Biomass-based porous N-self-doped carbon framework/polyaniline composite with outstanding supercapacitance. ACS Sustain. Chem. Eng. 5, 8663 (2017).CrossRef
38.
Zurück zum Zitat W. Du, X. Wang, J. Zhan, X. Sun, L. Kang, F. Jiang, X. Zhang, Q. Shao, M. Dong, H. Liu, V. Murugadoss, and Z. Guo, Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim. Acta 296, 907 (2019).CrossRef W. Du, X. Wang, J. Zhan, X. Sun, L. Kang, F. Jiang, X. Zhang, Q. Shao, M. Dong, H. Liu, V. Murugadoss, and Z. Guo, Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim. Acta 296, 907 (2019).CrossRef
39.
Zurück zum Zitat L. Peng, X. Peng, B. Liu, C. Wu, Y. Xie, and G. Yu, Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance. Flexible Planar Supercapacit. Nano Lett. 13, 2151 (2013). L. Peng, X. Peng, B. Liu, C. Wu, Y. Xie, and G. Yu, Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance. Flexible Planar Supercapacit. Nano Lett. 13, 2151 (2013).
40.
Zurück zum Zitat Y. Huang, J. Lu, S. Kang, D. Weng, L. Han, and Y. Wang, Synthesis and application of MnO2 /PANI/MWCNT ternary nanocomposite as an electrode material for supercapacitors. Int. J. Electrochem. Sci. 14, 9298 (2019).CrossRef Y. Huang, J. Lu, S. Kang, D. Weng, L. Han, and Y. Wang, Synthesis and application of MnO2 /PANI/MWCNT ternary nanocomposite as an electrode material for supercapacitors. Int. J. Electrochem. Sci. 14, 9298 (2019).CrossRef
41.
Zurück zum Zitat S. Ramesh, K. Karuppasamy, H.-S. Kim, H.S. Kim, and J.-H. Kim, Hierarchical flowerlike 3D nanostructure of Co3O4@MnO2/N-doped graphene oxide (NGO) hybrid composite for a high-performance supercapacitor. Sci. Rep. 8, 16543 (2018).CrossRef S. Ramesh, K. Karuppasamy, H.-S. Kim, H.S. Kim, and J.-H. Kim, Hierarchical flowerlike 3D nanostructure of Co3O4@MnO2/N-doped graphene oxide (NGO) hybrid composite for a high-performance supercapacitor. Sci. Rep. 8, 16543 (2018).CrossRef
42.
Zurück zum Zitat L. Wang, Y. Ouyang, X. Jiao, X. Xia, W. Lei, and Q. Hao, Polyaniline-assisted growth of MnO2 ultrathin nanosheets on graphene and porous graphene for asymmetric supercapacitor with enhanced energy density. Chem. Eng. J. 334, 1 (2018).CrossRef L. Wang, Y. Ouyang, X. Jiao, X. Xia, W. Lei, and Q. Hao, Polyaniline-assisted growth of MnO2 ultrathin nanosheets on graphene and porous graphene for asymmetric supercapacitor with enhanced energy density. Chem. Eng. J. 334, 1 (2018).CrossRef
43.
Zurück zum Zitat L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, and H.Y. Wu, Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J. Phys. Chem. C 118, 22865 (2014).CrossRef L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, and H.Y. Wu, Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J. Phys. Chem. C 118, 22865 (2014).CrossRef
44.
Zurück zum Zitat H. Jiang, J. Ma, and C. Li, Polyaniline–MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors. J. Mater. Chem. 22, 16939 (2012).CrossRef H. Jiang, J. Ma, and C. Li, Polyaniline–MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors. J. Mater. Chem. 22, 16939 (2012).CrossRef
45.
Zurück zum Zitat H. Lim, H. Kim, S.-O. Kim, and W. Choi, Self-assembled n-doped MOS2/carbon spheres by naturally occurring acid-catalyzed reaction for improved sodium-ion batteries. Chem. Eng. J. 387, 124144 (2020).CrossRef H. Lim, H. Kim, S.-O. Kim, and W. Choi, Self-assembled n-doped MOS2/carbon spheres by naturally occurring acid-catalyzed reaction for improved sodium-ion batteries. Chem. Eng. J. 387, 124144 (2020).CrossRef
46.
Zurück zum Zitat Y. Liu, Z. Qin, Y. Shen, Z. Dou, and N. Liu, Tuning spatial distribution of graphene sheets composited with polyaniline nanofiber array on carbon cloth towards ultrahigh areal energy density flexible supercapacitors. Carbon 186, 688 (2022).CrossRef Y. Liu, Z. Qin, Y. Shen, Z. Dou, and N. Liu, Tuning spatial distribution of graphene sheets composited with polyaniline nanofiber array on carbon cloth towards ultrahigh areal energy density flexible supercapacitors. Carbon 186, 688 (2022).CrossRef
47.
Zurück zum Zitat J. Zhou, L. Yu, W. Liu, X. Zhang, W. Mu, X. Du, Z. Zhang, and Y. Deng, High performance all-solid supercapacitors based on the network of ultralong manganese dioxide/polyaniline coaxial nanowires. Sci. Rep. 5, 17858 (2015).CrossRef J. Zhou, L. Yu, W. Liu, X. Zhang, W. Mu, X. Du, Z. Zhang, and Y. Deng, High performance all-solid supercapacitors based on the network of ultralong manganese dioxide/polyaniline coaxial nanowires. Sci. Rep. 5, 17858 (2015).CrossRef
48.
Zurück zum Zitat B. Pandit, E.S. Goda, M.H. Abu Elella, A.U. Rehman, S.E. Hong, S.R. Rondiya, P. Barkataki, S.F. Shaikh, A.M. Al-Enizi, S.M. El-Bahy, and K.R. Yoon, One-pot hydrothermal preparation of hierarchical manganese oxide nanorods for high-performance symmetric supercapacitors. J. Energy Chem. 65, 116 (2022).CrossRef B. Pandit, E.S. Goda, M.H. Abu Elella, A.U. Rehman, S.E. Hong, S.R. Rondiya, P. Barkataki, S.F. Shaikh, A.M. Al-Enizi, S.M. El-Bahy, and K.R. Yoon, One-pot hydrothermal preparation of hierarchical manganese oxide nanorods for high-performance symmetric supercapacitors. J. Energy Chem. 65, 116 (2022).CrossRef
49.
Zurück zum Zitat Z. Ma, G. Shao, Y. Fan, G. Wang, J. Song, and D. Shen, Construction of hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl. Mater. Interface 8, 9050 (2016).CrossRef Z. Ma, G. Shao, Y. Fan, G. Wang, J. Song, and D. Shen, Construction of hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl. Mater. Interface 8, 9050 (2016).CrossRef
Metadaten
Titel
Synthesis and Electrochemical Performance of MnO2 Nanowires/Polyaniline Composite as Supercapacitor Electrode Material
verfasst von
Xiangxiang Du
Shujun Liu
Qin Xu
Xuejun Shi
Publikationsdatum
07.04.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10362-5

Weitere Artikel der Ausgabe 6/2023

Journal of Electronic Materials 6/2023 Zur Ausgabe