Skip to main content
Erschienen in: Journal of Electronic Materials 6/2023

18.03.2023 | Original Research Article

Magnetic Transition and Magnetocaloric Effect of Gd(Ga, X) (X = Al, Si) Alloys

verfasst von: Guiquan Yao, Botao Liu, Qiang Wang, Weibin Cui, Sen Yang

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The crystal structure, magnetic properties, and magnetocaloric performances of Gd(Ga, x) (x = Al, Si) alloys have been systematically investigated. The single phase with a CrB-type orthorhombic structure (space group Cmcm) was observed for x ≤ 0.5 in GdGa1−xAlx and y ≤ 0.2 in GdGa1−ySiy alloys. All phase transitions of GdGa1−xAlx (0 ≤ x ≤ 0.5) alloys are of second-order and their Curie temperatures (TC) increase with the enhancement of the Al substitution amount. GdGa0.8Si0.2 alloy undergoes a first-order magnetic transition from antiferromagnetic (AFM) state to paramagnetic (PM) state. For Δμ0H of 0–7 T, the values of the maximum magnetic entropy change are 6.6 J/kg K, 7.7 J/kg K, 8.4 J/kg K, and 6.8 J/kg K in GdGa, GdGa0.7Al0.3, GdGa0.5Al0.5 , and GdGa0.8Si0.2 alloys, respectively. The magnetic entropy change is enhanced at the critical composition, which is ascribed to the lattice distortion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Smith, C.R.H. Bahl, R. Bjørk, K. Engelbrecht, K.K. Nielsen, and N. Pryds, Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy Mater. 2(11), 1288 (2012).CrossRef A. Smith, C.R.H. Bahl, R. Bjørk, K. Engelbrecht, K.K. Nielsen, and N. Pryds, Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy Mater. 2(11), 1288 (2012).CrossRef
2.
Zurück zum Zitat A. Kitanovski, Energy applications of magnetocaloric materials. Adv. Energy Mater. 10(10), 1903741 (2020).CrossRef A. Kitanovski, Energy applications of magnetocaloric materials. Adv. Energy Mater. 10(10), 1903741 (2020).CrossRef
3.
Zurück zum Zitat M. Balli, S. Jandl, P. Fournier, and A. Kedous-Lebouc, Advanced materials for magnetic cooling: fundamentals and practical aspects. Appl. Phys. Rev. 4(2), 021305 (2017).CrossRef M. Balli, S. Jandl, P. Fournier, and A. Kedous-Lebouc, Advanced materials for magnetic cooling: fundamentals and practical aspects. Appl. Phys. Rev. 4(2), 021305 (2017).CrossRef
4.
Zurück zum Zitat J.Y. Law, V. Franco, L.M. Moreno-Ramírez, A. Conde, D.Y. Karpenkov, I. Radulov, K.P. Skokov, and O. Gutfleisch, A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nat. Commun. 9(1), 2680 (2018).CrossRef J.Y. Law, V. Franco, L.M. Moreno-Ramírez, A. Conde, D.Y. Karpenkov, I. Radulov, K.P. Skokov, and O. Gutfleisch, A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nat. Commun. 9(1), 2680 (2018).CrossRef
5.
Zurück zum Zitat B. Nair, T. Usui, S. Crossley, S. Kurdi, G.G. Guzmán-Verri, X. Moya, S. Hirose, and N.D. Mathur, Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature 575, 468 (2019).CrossRef B. Nair, T. Usui, S. Crossley, S. Kurdi, G.G. Guzmán-Verri, X. Moya, S. Hirose, and N.D. Mathur, Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature 575, 468 (2019).CrossRef
6.
Zurück zum Zitat D. Cong, W. Xiong, A. Planes, Y. Ren, L. Mañosa, P. Cao, Z. Nie, X. Sun, Z. Yang, X. Hong, and Y. Wang, Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys. Phys. Rev. Lett. 122(25), 255703 (2019).CrossRef D. Cong, W. Xiong, A. Planes, Y. Ren, L. Mañosa, P. Cao, Z. Nie, X. Sun, Z. Yang, X. Hong, and Y. Wang, Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys. Phys. Rev. Lett. 122(25), 255703 (2019).CrossRef
7.
Zurück zum Zitat C. Wu, F. Feng, and Y. Xie, Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem. Soc. Rev. 42(12), 5157 (2013).CrossRef C. Wu, F. Feng, and Y. Xie, Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem. Soc. Rev. 42(12), 5157 (2013).CrossRef
8.
Zurück zum Zitat J. Lai, H. Sepehri-Amin, X. Tang, J. Li, Y. Matsushita, T. Ohkubo, A.T. Saito, and K. Hono, Reduction of hysteresis in (La1-xCex)y(MnzFe11.4-z)Si1.6 magnetocaloric compounds for cryogenic magnetic refrigeration. Acta Mater. 220, 117286 (2021).CrossRef J. Lai, H. Sepehri-Amin, X. Tang, J. Li, Y. Matsushita, T. Ohkubo, A.T. Saito, and K. Hono, Reduction of hysteresis in (La1-xCex)y(MnzFe11.4-z)Si1.6 magnetocaloric compounds for cryogenic magnetic refrigeration. Acta Mater. 220, 117286 (2021).CrossRef
9.
Zurück zum Zitat X. He, Y. Zhang, S. Wei, Y. Cao, K. Xu, and Z. Li, Achievement of a reversible giant magnetocaloric effect via exerting external hydrostatic pressure on a Ni45Co5Mn35In15 metamagnetic Heusler alloy. J. Phys. D Appl. Phys. 54(16), 165001 (2021).CrossRef X. He, Y. Zhang, S. Wei, Y. Cao, K. Xu, and Z. Li, Achievement of a reversible giant magnetocaloric effect via exerting external hydrostatic pressure on a Ni45Co5Mn35In15 metamagnetic Heusler alloy. J. Phys. D Appl. Phys. 54(16), 165001 (2021).CrossRef
10.
Zurück zum Zitat A.M. Chirkova, K.P. Skokov, Y. Skourski, F. Scheibel, A.Y. Karpenkov, A.S. Volegov, N.V. Baranov, K. Nielsch, L. Schultz, K.H. Müller, T.G. Woodcock, and O. Gutfleisch, Magnetocaloric properties and specifics of the hysteresis at the first-order metamagnetic transition in Ni-doped FeRh. Phys. Rev. Mater. 5(6), 064412 (2021).CrossRef A.M. Chirkova, K.P. Skokov, Y. Skourski, F. Scheibel, A.Y. Karpenkov, A.S. Volegov, N.V. Baranov, K. Nielsch, L. Schultz, K.H. Müller, T.G. Woodcock, and O. Gutfleisch, Magnetocaloric properties and specifics of the hysteresis at the first-order metamagnetic transition in Ni-doped FeRh. Phys. Rev. Mater. 5(6), 064412 (2021).CrossRef
11.
Zurück zum Zitat Y.S. Du, C.R. Li, G. Cheng, X.F. Wu, L. Ma, J. Wang, and G.H. Rao, Magnetic transition and magnetocaloric effect in Nd6Fe13Pd compound. J. Magn. Magn. Mater. 457, 8 (2018).CrossRef Y.S. Du, C.R. Li, G. Cheng, X.F. Wu, L. Ma, J. Wang, and G.H. Rao, Magnetic transition and magnetocaloric effect in Nd6Fe13Pd compound. J. Magn. Magn. Mater. 457, 8 (2018).CrossRef
12.
Zurück zum Zitat A. Biswas, N.A. Zarkevich, A.K. Pathak, O. Dolotko, I.Z. Hlova, A.V. Smirnov, Y. Mudryk, D.D. Johnson, and V.K. Pecharsky, First-order magnetic phase transition in Pr2In with negligible thermomagnetic hysteresis. Phys. Rev. B 101(22), 224402 (2020).CrossRef A. Biswas, N.A. Zarkevich, A.K. Pathak, O. Dolotko, I.Z. Hlova, A.V. Smirnov, Y. Mudryk, D.D. Johnson, and V.K. Pecharsky, First-order magnetic phase transition in Pr2In with negligible thermomagnetic hysteresis. Phys. Rev. B 101(22), 224402 (2020).CrossRef
13.
Zurück zum Zitat G. Yao, Y. Yu, J. Yang, J. Zhu, S. Yang, and W. Cui, The crystal structure, magnetic phase transition and magnetocaloric effect in R5CoSb2 (R = Pr, Nd, Gd–Er) alloys. Intermetallics 147, 107595 (2022).CrossRef G. Yao, Y. Yu, J. Yang, J. Zhu, S. Yang, and W. Cui, The crystal structure, magnetic phase transition and magnetocaloric effect in R5CoSb2 (R = Pr, Nd, Gd–Er) alloys. Intermetallics 147, 107595 (2022).CrossRef
14.
Zurück zum Zitat F. Zhang, K. Westra, Q. Shen, I. Batashev, A. Kiecana, N. van Dijk, and E. Brück, The second-order magnetic phase transition and magnetocaloric effect in all-d-metal NiCoMnTi-based Heusler alloys. J. Alloys Compd. 906, 164337 (2022).CrossRef F. Zhang, K. Westra, Q. Shen, I. Batashev, A. Kiecana, N. van Dijk, and E. Brück, The second-order magnetic phase transition and magnetocaloric effect in all-d-metal NiCoMnTi-based Heusler alloys. J. Alloys Compd. 906, 164337 (2022).CrossRef
15.
Zurück zum Zitat J. Kurian, M.R. Rahul, J. Arout Chelvane, A.V. Morozkin, A.K. Nigam, G. Phanikumar, and R. Nirmala, Enhanced magnetocaloric effect in undercooled rare earth intermetallic compounds RNi (R = Gd, Ho and Er), J. Magn. Magn. Mater. 499, 166302 (2020). J. Kurian, M.R. Rahul, J. Arout Chelvane, A.V. Morozkin, A.K. Nigam, G. Phanikumar, and R. Nirmala, Enhanced magnetocaloric effect in undercooled rare earth intermetallic compounds RNi (R = Gd, Ho and Er), J. Magn. Magn. Mater. 499, 166302 (2020).
16.
Zurück zum Zitat Z.J. Mo, J. Shen, L.Q. Yan, C.C. Tang, J. Lin, J.F. Wu, J.R. Sun, L.C. Wang, X.Q. Zheng, and B.G. Shen, Low field induced giant magnetocaloric effect in TmGa compound. Appl. Phys. Lett. 103(5), 052409 (2013).CrossRef Z.J. Mo, J. Shen, L.Q. Yan, C.C. Tang, J. Lin, J.F. Wu, J.R. Sun, L.C. Wang, X.Q. Zheng, and B.G. Shen, Low field induced giant magnetocaloric effect in TmGa compound. Appl. Phys. Lett. 103(5), 052409 (2013).CrossRef
17.
Zurück zum Zitat J. Chen, B.G. Shen, Q.Y. Dong, and J.R. Sun, Giant magnetocaloric effect in HoGa compound over a large temperature span. Solid State Commun. 150(3), 157 (2010).CrossRef J. Chen, B.G. Shen, Q.Y. Dong, and J.R. Sun, Giant magnetocaloric effect in HoGa compound over a large temperature span. Solid State Commun. 150(3), 157 (2010).CrossRef
18.
Zurück zum Zitat J. Chen, B.G. Shen, Q.Y. Dong, F.X. Hu, and J.R. Sun, Large reversible magnetocaloric effect caused by two successive magnetic transitions in ErGa compound. Appl. Phys. Lett. 95(13), 132504 (2009).CrossRef J. Chen, B.G. Shen, Q.Y. Dong, F.X. Hu, and J.R. Sun, Large reversible magnetocaloric effect caused by two successive magnetic transitions in ErGa compound. Appl. Phys. Lett. 95(13), 132504 (2009).CrossRef
19.
Zurück zum Zitat J.Y. Zhang, J. Luo, J.B. Li, J.K. Liang, Y.C. Wang, L.N. Ji, Y.H. Liu, and G.H. Rao, Magnetic properties and magnetocaloric effect of GdGa compound. J. Alloys Compd. 469(1), 15 (2009).CrossRef J.Y. Zhang, J. Luo, J.B. Li, J.K. Liang, Y.C. Wang, L.N. Ji, Y.H. Liu, and G.H. Rao, Magnetic properties and magnetocaloric effect of GdGa compound. J. Alloys Compd. 469(1), 15 (2009).CrossRef
20.
Zurück zum Zitat X.Q. Zheng, H. Wu, J. Chen, B. Zhang, Y.Q. Li, F.X. Hu, J.R. Sun, Q.Z. Huang, and B.G. Shen, The physical mechanism of magnetic field controlled magnetocaloric effect and magnetoresistance in bulk PrGa compound. Sci. Rep. 5(1), 14970 (2015).CrossRef X.Q. Zheng, H. Wu, J. Chen, B. Zhang, Y.Q. Li, F.X. Hu, J.R. Sun, Q.Z. Huang, and B.G. Shen, The physical mechanism of magnetic field controlled magnetocaloric effect and magnetoresistance in bulk PrGa compound. Sci. Rep. 5(1), 14970 (2015).CrossRef
21.
Zurück zum Zitat X.Q. Zheng, J.W. Xu, S.H. Shao, H. Zhang, J.Y. Zhang, S.G. Wang, Z.Y. Xu, L.C. Wang, J. Chen, and B.G. Shen, Large magnetocaloric effect of NdGa compound due to successive magnetic transitions. AIP Adv. 8(5), 056425 (2018).CrossRef X.Q. Zheng, J.W. Xu, S.H. Shao, H. Zhang, J.Y. Zhang, S.G. Wang, Z.Y. Xu, L.C. Wang, J. Chen, and B.G. Shen, Large magnetocaloric effect of NdGa compound due to successive magnetic transitions. AIP Adv. 8(5), 056425 (2018).CrossRef
22.
Zurück zum Zitat X.Q. Zheng, J. Chen, J. Shen, H. Zhang, Z.Y. Xu, W.W. Gao, J.F. Wu, F.X. Hu, J.R. Sun, and B.G. Shen, Large refrigerant capacity of RGa (R = Tb and Dy) compounds. J. Appl. Phys. 111(7), 07A917 (2012).CrossRef X.Q. Zheng, J. Chen, J. Shen, H. Zhang, Z.Y. Xu, W.W. Gao, J.F. Wu, F.X. Hu, J.R. Sun, and B.G. Shen, Large refrigerant capacity of RGa (R = Tb and Dy) compounds. J. Appl. Phys. 111(7), 07A917 (2012).CrossRef
23.
Zurück zum Zitat G. Yao, F. Wei, J. Zhang, X. Fan, X. Yin, W. Cui, and Q. Wang, The enhanced magnetocaloric effect in Dy2In1−xAlx by a non-hysteresis metamagnetic phase transition. Scr. Mater. 167, 37 (2019).CrossRef G. Yao, F. Wei, J. Zhang, X. Fan, X. Yin, W. Cui, and Q. Wang, The enhanced magnetocaloric effect in Dy2In1−xAlx by a non-hysteresis metamagnetic phase transition. Scr. Mater. 167, 37 (2019).CrossRef
24.
Zurück zum Zitat G. Yao, S. Sun, J. Yang, H. Wu, Q. Wang, J. Zhu, and W. Cui, Enhanced magnetocaloric effects in hetero-structural alloyed Er2In1-xAlx (0 ≤ x ≤ 0.4) system by novel nonhysteretic metamagnetsm. Scr. Mater. 194, 113649 (2021).CrossRef G. Yao, S. Sun, J. Yang, H. Wu, Q. Wang, J. Zhu, and W. Cui, Enhanced magnetocaloric effects in hetero-structural alloyed Er2In1-xAlx (0 ≤ x ≤ 0.4) system by novel nonhysteretic metamagnetsm. Scr. Mater. 194, 113649 (2021).CrossRef
25.
Zurück zum Zitat G. Yao, G. Zeng, Q. Wang, and W. Cui, Structural evolution and magnetic phase transitions of Nd5Ge3-xSix (0 ≤ x ≤ 3) compounds. J. Solid State Chem. 315, 123533 (2022).CrossRef G. Yao, G. Zeng, Q. Wang, and W. Cui, Structural evolution and magnetic phase transitions of Nd5Ge3-xSix (0 ≤ x ≤ 3) compounds. J. Solid State Chem. 315, 123533 (2022).CrossRef
26.
Zurück zum Zitat B. Barbara, C. Bècle, R. Lemaire, and R. Pauthenet, Magnetic properties of some rare earth-aluminum alloys. J. Appl. Phys. 39(2), 1084 (1968).CrossRef B. Barbara, C. Bècle, R. Lemaire, and R. Pauthenet, Magnetic properties of some rare earth-aluminum alloys. J. Appl. Phys. 39(2), 1084 (1968).CrossRef
27.
Zurück zum Zitat Y. Feng, D.M. Silevitch, J. Wang, A. Palmer, N. Woo, J.Q. Yan, Z. Islam, A.V. Suslov, P.B. Littlewood, and T.F. Rosenbaum, Evolution of incommensurate spin order with magnetic field and temperature in the itinerant antiferromagnet GdSi. Phys. Rev. B 88(13), 134404 (2013).CrossRef Y. Feng, D.M. Silevitch, J. Wang, A. Palmer, N. Woo, J.Q. Yan, Z. Islam, A.V. Suslov, P.B. Littlewood, and T.F. Rosenbaum, Evolution of incommensurate spin order with magnetic field and temperature in the itinerant antiferromagnet GdSi. Phys. Rev. B 88(13), 134404 (2013).CrossRef
28.
Zurück zum Zitat H. Zhang, Y.W. Li, E. Liu, Y.J. Ke, J.L. Jin, Y. Long, and B.G. Shen, Giant rotating magnetocaloric effect induced by highly texturing in polycrystalline DyNiSi compound. Sci. Rep. 5, 11929 (2015).CrossRef H. Zhang, Y.W. Li, E. Liu, Y.J. Ke, J.L. Jin, Y. Long, and B.G. Shen, Giant rotating magnetocaloric effect induced by highly texturing in polycrystalline DyNiSi compound. Sci. Rep. 5, 11929 (2015).CrossRef
29.
Zurück zum Zitat S. Gupta, R. Rawat, and K.G. Suresh, Field induced large magnetocaloric effect and magnetoresistance in ErNiSi. Appl. Phys. Lett. 105(1), 012403 (2014).CrossRef S. Gupta, R. Rawat, and K.G. Suresh, Field induced large magnetocaloric effect and magnetoresistance in ErNiSi. Appl. Phys. Lett. 105(1), 012403 (2014).CrossRef
30.
Zurück zum Zitat S. Gupta, K.G. Suresh, A.V. Lukoyanov, Y.V. Knyazev, and Y.I. Kuz’min, Understanding the magnetic, electronic and optical properties of ternary rare earth intermetallic compound HoNiSi. J. Alloys Compd. 650, 542 (2015).CrossRef S. Gupta, K.G. Suresh, A.V. Lukoyanov, Y.V. Knyazev, and Y.I. Kuz’min, Understanding the magnetic, electronic and optical properties of ternary rare earth intermetallic compound HoNiSi. J. Alloys Compd. 650, 542 (2015).CrossRef
31.
Zurück zum Zitat H. Zhang, Y. Wu, Y. Long, H. Wang, K. Zhong, F. Hu, J. Sun, and B. Shen, Large reversible magnetocaloric effect in antiferromagnetic HoNiSi compound. J. Appl. Phys. 116(21), 213902 (2014).CrossRef H. Zhang, Y. Wu, Y. Long, H. Wang, K. Zhong, F. Hu, J. Sun, and B. Shen, Large reversible magnetocaloric effect in antiferromagnetic HoNiSi compound. J. Appl. Phys. 116(21), 213902 (2014).CrossRef
Metadaten
Titel
Magnetic Transition and Magnetocaloric Effect of Gd(Ga, X) (X = Al, Si) Alloys
verfasst von
Guiquan Yao
Botao Liu
Qiang Wang
Weibin Cui
Sen Yang
Publikationsdatum
18.03.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10277-1

Weitere Artikel der Ausgabe 6/2023

Journal of Electronic Materials 6/2023 Zur Ausgabe