Skip to main content
Erschienen in: Journal of Polymer Research 4/2024

01.04.2024 | Original Paper

Fabrication, and characterization of crosslinked sodium alginate/hyaluronic acid/gelatin 3Dprinted heparin-loaded scaffold

verfasst von: Mohammad Mahdi Safikhani, Azadeh Asefnejad, Rouhollah Mehdinavaz Aghdam, Sadegh Rahmati

Erschienen in: Journal of Polymer Research | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coronary restenosis is the primary unsolved problem following open heart surgery or percutaneous transluminal coronary angioplasty, and yet, it remains unknown how a pharmaceutical strategy minimizes restenosis by scaffold-based administration of several medicines. In this study, 3D-printed hexagonal polymer scaffolds of sodium alginate/hyaluronic acid/gelatin (SA/HA/Gel) loaded with heparin drug were fabricated. The morphology, physicochemical, and surface properties of the scaffolds were investigated through SEM, FTIR, porosity, wettability, water absorption, mechanical properties, biodegradability, and heparin release studies. The cell-scaffold interactions were studied by the cell attachment assays and MTT assay on L929 cell lines. The investigation demonstrated that raising the print angle resulted in 3D-printed scaffolds having higher porosity percentages, mechanical qualities, and heparin release (P < 0.05), but had no discernible impact on the scaffolds’ biological properties (P > 0.05). Heparin showed a regulated slow-release behavior that was consistent with the scaffolds’ rate of degradation and may be continually efficient during tissue regeneration. According to the outcomes of the in vitro biological evaluation, the 3D-printed scaffolds showed suitable cell attachment and biocompatibility (> 90%), and they were not overtly hazardous. The findings support the use of the fabricated 3D-printed SA/HA/Gel heparin-loaded scaffolds for cardiovascular tissue applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F (2014) Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater Sci Eng C 44:24–37CrossRef Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F (2014) Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater Sci Eng C 44:24–37CrossRef
3.
Zurück zum Zitat Mosadegh B, Xiong G, Dunham S, Min JK (2015) Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater 10:34002CrossRef Mosadegh B, Xiong G, Dunham S, Min JK (2015) Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater 10:34002CrossRef
4.
Zurück zum Zitat Baheiraei N, Yeganeh H, Ai J, Gharibi R, Ebrahimi-Barough S, Azami M, Vahdat S, Baharvand H (2015) Preparation of a porous conductive scaffold from aniline pentamer‐modified polyurethane/PCL blend for cardiac tissue engineering. J Biomed Mater Res A 103:3179–3187PubMedCrossRef Baheiraei N, Yeganeh H, Ai J, Gharibi R, Ebrahimi-Barough S, Azami M, Vahdat S, Baharvand H (2015) Preparation of a porous conductive scaffold from aniline pentamer‐modified polyurethane/PCL blend for cardiac tissue engineering. J Biomed Mater Res A 103:3179–3187PubMedCrossRef
6.
Zurück zum Zitat Lee S-J, Zhu W, Nowicki M, Lee G, Heo DN, Kim J, Zuo YY, Zhang LG (2018) 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng 15:16018CrossRef Lee S-J, Zhu W, Nowicki M, Lee G, Heo DN, Kim J, Zuo YY, Zhang LG (2018) 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng 15:16018CrossRef
8.
Zurück zum Zitat Zhu K, Shin SR, van Kempen T, Li Y, Ponraj V, Nasajpour A, Mandla S, Hu N, Liu X, Leijten J (2017) Gold nanocomposite bioink for printing 3D cardiac constructs. Adv Funct Mater 27:1605352PubMedPubMedCentralCrossRef Zhu K, Shin SR, van Kempen T, Li Y, Ponraj V, Nasajpour A, Mandla S, Hu N, Liu X, Leijten J (2017) Gold nanocomposite bioink for printing 3D cardiac constructs. Adv Funct Mater 27:1605352PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24:3475–3481PubMedCrossRef Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24:3475–3481PubMedCrossRef
11.
Zurück zum Zitat Ma G, Fang D, Liu Y, Zhu X, Nie J (2012) Electrospun sodium alginate/poly (ethylene oxide) core–shell nanofibers scaffolds potential for tissue engineering applications. Carbohydr Polym 87:737–743PubMedCrossRef Ma G, Fang D, Liu Y, Zhu X, Nie J (2012) Electrospun sodium alginate/poly (ethylene oxide) core–shell nanofibers scaffolds potential for tissue engineering applications. Carbohydr Polym 87:737–743PubMedCrossRef
13.
Zurück zum Zitat Wang Y, Cai L-Q, Nugraha B, Gao Y, Leo HL (2014) Current hydrogel solutions for repairing and regeneration of complex tissues. Curr Med Chem 21:2480–2496PubMedCrossRef Wang Y, Cai L-Q, Nugraha B, Gao Y, Leo HL (2014) Current hydrogel solutions for repairing and regeneration of complex tissues. Curr Med Chem 21:2480–2496PubMedCrossRef
14.
Zurück zum Zitat Abasalta M, Asefnejad A, Khorasani MT, Saadatabadi AR, Irani M (2021) Adsorption and sustained release of doxorubicin from N-carboxymethyl chitosan/polyvinyl alcohol/poly(ε-caprolactone) composite and core-shell nanofibers. J Drug Deliv Sci Technol 67:102937CrossRef Abasalta M, Asefnejad A, Khorasani MT, Saadatabadi AR, Irani M (2021) Adsorption and sustained release of doxorubicin from N-carboxymethyl chitosan/polyvinyl alcohol/poly(ε-caprolactone) composite and core-shell nanofibers. J Drug Deliv Sci Technol 67:102937CrossRef
15.
Zurück zum Zitat Gaetani R, Feyen DAM, Verhage V, Slaats R, Messina E, Christman KL, Giacomello A, Doevendans PAFM, Sluijter JPG (2015) Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61:339–348PubMedCrossRef Gaetani R, Feyen DAM, Verhage V, Slaats R, Messina E, Christman KL, Giacomello A, Doevendans PAFM, Sluijter JPG (2015) Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61:339–348PubMedCrossRef
16.
Zurück zum Zitat Raina DB, Larsson D, Mrkonjic F, Isaksson H, Kumar A, Lidgren L, Tägil M (2018) Gelatin-hydroxyapatite-calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: In-vitro and in-vivo carrier properties. J Control Release 272:83–96PubMedCrossRef Raina DB, Larsson D, Mrkonjic F, Isaksson H, Kumar A, Lidgren L, Tägil M (2018) Gelatin-hydroxyapatite-calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: In-vitro and in-vivo carrier properties. J Control Release 272:83–96PubMedCrossRef
17.
Zurück zum Zitat Erdem A, Darabi MA, Nasiri R, Sangabathuni S, Ertas YN, Alem H, Hosseini V, Shamloo A, Nasr AS (2020) Ahadian, 3D bioprinting of oxygenated cell-laden gelatin methacryloyl constructs. Adv Healthc Mater 9:1901794CrossRef Erdem A, Darabi MA, Nasiri R, Sangabathuni S, Ertas YN, Alem H, Hosseini V, Shamloo A, Nasr AS (2020) Ahadian, 3D bioprinting of oxygenated cell-laden gelatin methacryloyl constructs. Adv Healthc Mater 9:1901794CrossRef
18.
Zurück zum Zitat Sahoo N, Sahoo RK, Biswas N, Guha A, Kuotsu K (2015) Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol 81:317–331PubMedCrossRef Sahoo N, Sahoo RK, Biswas N, Guha A, Kuotsu K (2015) Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol 81:317–331PubMedCrossRef
19.
Zurück zum Zitat Spencer AR, Shirzaei Sani E, Soucy JR, Corbet CC, Primbetova A, Koppes RA, Annabi N (2019) Bioprinting of a cell-laden conductive hydrogel composite. ACS Appl Mater Interfaces 11:30518–30533PubMedPubMedCentralCrossRef Spencer AR, Shirzaei Sani E, Soucy JR, Corbet CC, Primbetova A, Koppes RA, Annabi N (2019) Bioprinting of a cell-laden conductive hydrogel composite. ACS Appl Mater Interfaces 11:30518–30533PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Farsi M, Asefnejad A, Baharifar H (2022) A hyaluronic acid/PVA electrospun coating on 3D printed PLA scaffold for orthopedic application. Prog Biomater 11:67–77PubMedPubMedCentralCrossRef Farsi M, Asefnejad A, Baharifar H (2022) A hyaluronic acid/PVA electrospun coating on 3D printed PLA scaffold for orthopedic application. Prog Biomater 11:67–77PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Detta N, Errico C, Dinucci D, Puppi D, Clarke DA, Reilly GC, Chiellini F (2010) Novel electrospun polyurethane/gelatin composite meshes for vascular grafts. J Mater Sci Mater Med 21:1761–1769PubMedCrossRef Detta N, Errico C, Dinucci D, Puppi D, Clarke DA, Reilly GC, Chiellini F (2010) Novel electrospun polyurethane/gelatin composite meshes for vascular grafts. J Mater Sci Mater Med 21:1761–1769PubMedCrossRef
22.
Zurück zum Zitat Dahlmann J, Krause A, Möller L, Kensah G, Möwes M, Diekmann A, Martin U, Kirschning A, Gruh I, Dräger G (2013) Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34:940–951PubMedCrossRef Dahlmann J, Krause A, Möller L, Kensah G, Möwes M, Diekmann A, Martin U, Kirschning A, Gruh I, Dräger G (2013) Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34:940–951PubMedCrossRef
23.
Zurück zum Zitat Luo Y, Li Y, Qin X, Wa Q (2018) 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering. Mater Des 146:12–19CrossRef Luo Y, Li Y, Qin X, Wa Q (2018) 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering. Mater Des 146:12–19CrossRef
25.
Zurück zum Zitat Chen L, He Z, Chen B, Yang M, Zhao Y, Sun W, Xiao Z, Zhang J, Dai J (2010) Loading of VEGF to the heparin cross-linked demineralized bone matrix improves vascularization of the scaffold. J Mater Sci Mater Med 21:309–317PubMedCrossRef Chen L, He Z, Chen B, Yang M, Zhao Y, Sun W, Xiao Z, Zhang J, Dai J (2010) Loading of VEGF to the heparin cross-linked demineralized bone matrix improves vascularization of the scaffold. J Mater Sci Mater Med 21:309–317PubMedCrossRef
26.
Zurück zum Zitat Zhao B, Zhao Z, Ma J, Ma X (2019) Modulation of angiogenic potential of tissue-engineered peripheral nerve by covalent incorporation of heparin and loading with vascular endothelial growth factor. Neurosci Lett 705:259–264PubMedCrossRef Zhao B, Zhao Z, Ma J, Ma X (2019) Modulation of angiogenic potential of tissue-engineered peripheral nerve by covalent incorporation of heparin and loading with vascular endothelial growth factor. Neurosci Lett 705:259–264PubMedCrossRef
27.
Zurück zum Zitat Castilho M, Rodrigues J, Pires I, Gouveia B, Pereira M, Moseke C, Groll J, Ewald A, Vorndran E (2015) Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication 7:15004CrossRef Castilho M, Rodrigues J, Pires I, Gouveia B, Pereira M, Moseke C, Groll J, Ewald A, Vorndran E (2015) Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication 7:15004CrossRef
28.
Zurück zum Zitat Arabi N, Zamanian A, Rashvand SN, Ghorbani F (2018) The tunable porous structure of gelatin–bioglass nanocomposite scaffolds for bone tissue engineering applications: physicochemical, mechanical, and in vitro properties. Macromol Mater Eng 303(3):1700539CrossRef Arabi N, Zamanian A, Rashvand SN, Ghorbani F (2018) The tunable porous structure of gelatin–bioglass nanocomposite scaffolds for bone tissue engineering applications: physicochemical, mechanical, and in vitro properties. Macromol Mater Eng 303(3):1700539CrossRef
30.
Zurück zum Zitat Tranoudis I, Efron N (2004) Water properties of soft contact lens materials. Contact Lens Anterior Eye 27:193–208PubMedCrossRef Tranoudis I, Efron N (2004) Water properties of soft contact lens materials. Contact Lens Anterior Eye 27:193–208PubMedCrossRef
31.
Zurück zum Zitat Hsieh C-F, Chen C-H, Kao H-H, Govindaraju DT, Dash BS, Chen J-P (2022) PLGA/gelatin/hyaluronic acid fibrous membrane scaffold for therapeutic delivery of adipose-derived stem cells to promote wound healing. Biomedicines. 10:2902PubMedPubMedCentralCrossRef Hsieh C-F, Chen C-H, Kao H-H, Govindaraju DT, Dash BS, Chen J-P (2022) PLGA/gelatin/hyaluronic acid fibrous membrane scaffold for therapeutic delivery of adipose-derived stem cells to promote wound healing. Biomedicines. 10:2902PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Dutta SD, Hexiu J, Patel DK, Ganguly K (2021) Lim, 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. Int J Biol Macromol 167:644–658PubMedCrossRef Dutta SD, Hexiu J, Patel DK, Ganguly K (2021) Lim, 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. Int J Biol Macromol 167:644–658PubMedCrossRef
34.
Zurück zum Zitat Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491PubMedCrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491PubMedCrossRef
35.
Zurück zum Zitat Limmahakhun S, Oloyede A, Sitthiseripratip K, Xiao Y (2017) Yan, 3D-printed cellular structures for bone biomimetic implants. Addit Manuf 15:93–101 Limmahakhun S, Oloyede A, Sitthiseripratip K, Xiao Y (2017) Yan, 3D-printed cellular structures for bone biomimetic implants. Addit Manuf 15:93–101
36.
Zurück zum Zitat Baniasadi H, Sa AR, Mashayekhan S (2015) Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol 74:360–366PubMedCrossRef Baniasadi H, Sa AR, Mashayekhan S (2015) Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol 74:360–366PubMedCrossRef
37.
Zurück zum Zitat Roy S, Rhim J-W (2021) Fabrication of bioactive binary composite film based on gelatin/chitosan incorporated with cinnamon essential oil and rutin. Colloids Surf B Biointerfaces 204:111830PubMedCrossRef Roy S, Rhim J-W (2021) Fabrication of bioactive binary composite film based on gelatin/chitosan incorporated with cinnamon essential oil and rutin. Colloids Surf B Biointerfaces 204:111830PubMedCrossRef
38.
Zurück zum Zitat Haung S-M, Lin Y-T, Liu S-M, Chen J-C, Chen W-C (2021) In vitro evaluation of a composite gelatin–hyaluronic acid–alginate porous scaffold with different pore distributions for cartilage regeneration. Gels 7:165PubMedPubMedCentralCrossRef Haung S-M, Lin Y-T, Liu S-M, Chen J-C, Chen W-C (2021) In vitro evaluation of a composite gelatin–hyaluronic acid–alginate porous scaffold with different pore distributions for cartilage regeneration. Gels 7:165PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Liu D, Lian Y, Fang Q, Liu L, Zhang J, Li J (2018) Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an efficient ocular delivery platform for moxifloxacin hydrochloride. Int J Biol Macromol 116:1026–1036PubMedCrossRef Liu D, Lian Y, Fang Q, Liu L, Zhang J, Li J (2018) Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an efficient ocular delivery platform for moxifloxacin hydrochloride. Int J Biol Macromol 116:1026–1036PubMedCrossRef
40.
Zurück zum Zitat Athamneh T, Amin A, Benke E, Ambrus R, Leopold CS, Gurikov P, Smirnova I (2019) Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery. J Supercrit Fluids 150:49–55CrossRef Athamneh T, Amin A, Benke E, Ambrus R, Leopold CS, Gurikov P, Smirnova I (2019) Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery. J Supercrit Fluids 150:49–55CrossRef
41.
Zurück zum Zitat Li X, Xu P, Cheng Y, Zhang W, Zheng B, Wang Q (2020) Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism. Mater Sci Eng C 111:110749CrossRef Li X, Xu P, Cheng Y, Zhang W, Zheng B, Wang Q (2020) Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism. Mater Sci Eng C 111:110749CrossRef
44.
Zurück zum Zitat Fir MM, Smidovnik A, Milivojevic L, Zmitek J, Prosek M (2009) Studies of CoQ10 and cyclodextrin complexes: solubility, thermo-and photo-stability. J Incl Phenom Macrocycl Chem 64:225–232CrossRef Fir MM, Smidovnik A, Milivojevic L, Zmitek J, Prosek M (2009) Studies of CoQ10 and cyclodextrin complexes: solubility, thermo-and photo-stability. J Incl Phenom Macrocycl Chem 64:225–232CrossRef
45.
Zurück zum Zitat Paxton NC, Woodruff MA (2022) Measuring contact angles on hydrophilic porous scaffolds by implementing a novel raised platform approach: a technical note. Polym Adv Technol 33:3759–3765CrossRef Paxton NC, Woodruff MA (2022) Measuring contact angles on hydrophilic porous scaffolds by implementing a novel raised platform approach: a technical note. Polym Adv Technol 33:3759–3765CrossRef
46.
48.
Zurück zum Zitat Ben N, Halima (2016) Poly (vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv 6:39823–39832CrossRef Ben N, Halima (2016) Poly (vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv 6:39823–39832CrossRef
49.
Zurück zum Zitat Nguyen-Truong M, Li YV, Wang Z (2020) Mechanical considerations of electrospun scaffolds for myocardial tissue and regenerative engineering. Bioengineering 7:122PubMedPubMedCentralCrossRef Nguyen-Truong M, Li YV, Wang Z (2020) Mechanical considerations of electrospun scaffolds for myocardial tissue and regenerative engineering. Bioengineering 7:122PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Vishwas M, Basavaraj CK (2017) Studies on optimizing process parameters of fused deposition modelling technology for ABS. Mater Today Proc. 4:10994–11003CrossRef Vishwas M, Basavaraj CK (2017) Studies on optimizing process parameters of fused deposition modelling technology for ABS. Mater Today Proc. 4:10994–11003CrossRef
51.
Zurück zum Zitat Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264PubMedCrossRef Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264PubMedCrossRef
52.
Zurück zum Zitat Schmid R, Schmidt SK, Detsch R, Horder H, Blunk T, Schrüfer S, Schubert DW, Fischer L, Thievessen I, Heltmann-Meyer S (2022) A New Printable Alginate/Hyaluronic Acid/Gelatin hydrogel suitable for Biofabrication of in Vitro and in vivo metastatic melanoma models. Adv Funct Mater 32:2107993CrossRef Schmid R, Schmidt SK, Detsch R, Horder H, Blunk T, Schrüfer S, Schubert DW, Fischer L, Thievessen I, Heltmann-Meyer S (2022) A New Printable Alginate/Hyaluronic Acid/Gelatin hydrogel suitable for Biofabrication of in Vitro and in vivo metastatic melanoma models. Adv Funct Mater 32:2107993CrossRef
53.
Zurück zum Zitat Pan T, Song W, Cao X, Wang Y (2016) 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties. J Mater Sci Technol 32:889–900CrossRef Pan T, Song W, Cao X, Wang Y (2016) 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties. J Mater Sci Technol 32:889–900CrossRef
54.
Zurück zum Zitat Joshi A, Kaur T, Singh N (2022) 3D bioprinted alginate-silk-based smart cell-instructive scaffolds for dual differentiation of human mesenchymal stem cells. ACS Appl Bio Mater 5:2870–2879PubMedCrossRef Joshi A, Kaur T, Singh N (2022) 3D bioprinted alginate-silk-based smart cell-instructive scaffolds for dual differentiation of human mesenchymal stem cells. ACS Appl Bio Mater 5:2870–2879PubMedCrossRef
55.
Zurück zum Zitat Liu C, Qin W, Wang Y, Ma J, Liu J, Wu S, Zhao H (2021) 3D printed gelatin/sodium alginate hydrogel scaffolds doped with nano-attapulgite for bone tissue repair. Int J Nanomed 16:8417CrossRef Liu C, Qin W, Wang Y, Ma J, Liu J, Wu S, Zhao H (2021) 3D printed gelatin/sodium alginate hydrogel scaffolds doped with nano-attapulgite for bone tissue repair. Int J Nanomed 16:8417CrossRef
56.
Zurück zum Zitat Yu Y, Chen J, Chen R, Cao L, Tang W, Lin D, Wang J, Liu C (2015) Enhancement of VEGF-mediated angiogenesis by 2-N, 6-O-sulfated chitosan-coated hierarchical PLGA scaffolds. ACS Appl Mater Interfaces 7:9982–9990PubMedCrossRef Yu Y, Chen J, Chen R, Cao L, Tang W, Lin D, Wang J, Liu C (2015) Enhancement of VEGF-mediated angiogenesis by 2-N, 6-O-sulfated chitosan-coated hierarchical PLGA scaffolds. ACS Appl Mater Interfaces 7:9982–9990PubMedCrossRef
58.
Zurück zum Zitat Zhang B, Nasereddin J, McDonagh T, von Zeppelin D, Gleadall A, Alqahtani F, Bibb R, Belton P, Qi S (2021) Effects of porosity on drug release kinetics of swellable and erodible porous pharmaceutical solid dosage forms fabricated by hot melt droplet deposition 3D printing. Int J Pharm 604:120626PubMedCrossRef Zhang B, Nasereddin J, McDonagh T, von Zeppelin D, Gleadall A, Alqahtani F, Bibb R, Belton P, Qi S (2021) Effects of porosity on drug release kinetics of swellable and erodible porous pharmaceutical solid dosage forms fabricated by hot melt droplet deposition 3D printing. Int J Pharm 604:120626PubMedCrossRef
Metadaten
Titel
Fabrication, and characterization of crosslinked sodium alginate/hyaluronic acid/gelatin 3Dprinted heparin-loaded scaffold
verfasst von
Mohammad Mahdi Safikhani
Azadeh Asefnejad
Rouhollah Mehdinavaz Aghdam
Sadegh Rahmati
Publikationsdatum
01.04.2024
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 4/2024
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-024-03942-4

Weitere Artikel der Ausgabe 4/2024

Journal of Polymer Research 4/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.