Skip to main content

2012 | OriginalPaper | Buchkapitel

6. Formation of Epitaxial Graphene

verfasst von : D. Kurt Gaskill, Luke O. Nyakiti

Erschienen in: Graphene Nanoelectronics

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter starts off with a discussion on the history of graphite growth on SiC. It then gives an overview of various methods to grow epitaxial graphene on SiC; methods discussed include growth on various polytypes, at different vacuum levels and gas flows, and on both the Si- and C-face of SiC. Structural and electronic properties of these films are looked into along with carrier mobility results from Hall-bar and FET-structures where available.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Production of artificial crystalline carbonaceous E. Acheson and United States Patent No. 492.767 (28.02.1893). Production of artificial crystalline carbonaceous E. Acheson and United States Patent No. 492.767 (28.02.1893).
3.
Zurück zum Zitat A. J. Vanbommel, J. E. Crombeen, and A. Vantooren, “LEED and Auger-electron observations of SiC (0001) surface,” Surface Science 48 (2), 463–472 (1975).CrossRef A. J. Vanbommel, J. E. Crombeen, and A. Vantooren, “LEED and Auger-electron observations of SiC (0001) surface,” Surface Science 48 (2), 463–472 (1975).CrossRef
4.
Zurück zum Zitat I. Forbeaux, J. M. Themlin, and J. M. Debever, “Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure,” Physical Review B 58 (24), 16396–16406 (1998).CrossRef I. Forbeaux, J. M. Themlin, and J. M. Debever, “Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure,” Physical Review B 58 (24), 16396–16406 (1998).CrossRef
5.
Zurück zum Zitat A. Charrier, A. Coati, T. Argunova et al., “Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films,” Journal of Applied Physics 92 (5), 2479–2484 (2002).CrossRef A. Charrier, A. Coati, T. Argunova et al., “Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films,” Journal of Applied Physics 92 (5), 2479–2484 (2002).CrossRef
6.
Zurück zum Zitat K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field effect in atomically thin carbon films,” Science 306 (5696), 666–669 (2004).CrossRef K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field effect in atomically thin carbon films,” Science 306 (5696), 666–669 (2004).CrossRef
7.
Zurück zum Zitat C. Berger, Z. M. Song, T. B. Li et al., “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” Journal of Physical Chemistry B 108 (52), 19912–19916 (2004).CrossRef C. Berger, Z. M. Song, T. B. Li et al., “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” Journal of Physical Chemistry B 108 (52), 19912–19916 (2004).CrossRef
8.
Zurück zum Zitat Y. B. Zhang, Y. W. Tan, H. L. Stormer et al., “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438 (7065), 201–204 (2005).CrossRef Y. B. Zhang, Y. W. Tan, H. L. Stormer et al., “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438 (7065), 201–204 (2005).CrossRef
9.
Zurück zum Zitat J. Hass, R. Feng, T. Li et al., “Highly ordered graphene for two dimensional electronics,” Applied Physics Letters 89 (14), 143106 (2006). J. Hass, R. Feng, T. Li et al., “Highly ordered graphene for two dimensional electronics,” Applied Physics Letters 89 (14), 143106 (2006).
10.
Zurück zum Zitat Y. Q. Wu, P. D. Ye, M. A. Capano et al., “Top-gated graphene field-effect-transistors formed by decomposition of SiC,” Applied Physics Letters 92 (9), 092102 (2008). Y. Q. Wu, P. D. Ye, M. A. Capano et al., “Top-gated graphene field-effect-transistors formed by decomposition of SiC,” Applied Physics Letters 92 (9), 092102 (2008).
11.
Zurück zum Zitat private communication G. Jernigan and P. Campbell, Nov 30, 2007. private communication G. Jernigan and P. Campbell, Nov 30, 2007.
12.
Zurück zum Zitat K. V. Emtsev, A. Bostwick, K. Horn et al., “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nature Materials 8 (3), 203–207 (2009).CrossRef K. V. Emtsev, A. Bostwick, K. Horn et al., “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nature Materials 8 (3), 203–207 (2009).CrossRef
13.
Zurück zum Zitat private communication D. K. Gaskill and J. L.Tedesco, Sept, 2008. private communication D. K. Gaskill and J. L.Tedesco, Sept, 2008.
14.
Zurück zum Zitat D. K. Gaskill, G. G. Jernigan, P. M. Campbell et al., in Graphene and Emerging Materials for Post-Cmos Applications, edited by Y. Obeng, S. DeGendt, P. Srinivasan et al. (2009), Vol. 19, pp. 117–124. D. K. Gaskill, G. G. Jernigan, P. M. Campbell et al., in Graphene and Emerging Materials for Post-Cmos Applications, edited by Y. Obeng, S. DeGendt, P. Srinivasan et al. (2009), Vol. 19, pp. 117–124.
15.
Zurück zum Zitat private communication D. K. Gaskill and J. L. Tedesco, Dec 4, 2008. private communication D. K. Gaskill and J. L. Tedesco, Dec 4, 2008.
16.
Zurück zum Zitat private communication D. K. Gaskill and J. L. Tedesco, Dec 17, 2009. private communication D. K. Gaskill and J. L. Tedesco, Dec 17, 2009.
18.
Zurück zum Zitat J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” Journal of Physics-Condensed Matter 20 (32), 323202 (2008). J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” Journal of Physics-Condensed Matter 20 (32), 323202 (2008).
19.
Zurück zum Zitat T. Seyller, A. Bostwick, K. V. Emtsev et al., “Epitaxial graphene: a new material,” Physica Status Solidi B-Basic Solid State Physics 245 (7), 1436–1446 (2008).CrossRef T. Seyller, A. Bostwick, K. V. Emtsev et al., “Epitaxial graphene: a new material,” Physica Status Solidi B-Basic Solid State Physics 245 (7), 1436–1446 (2008).CrossRef
20.
Zurück zum Zitat W. A. de Heer, C. Berger, X. S. Wu et al., “Epitaxial graphene electronic structure and transport,” Journal of Physics D-Applied Physics 43 (37), 374007 (2010). W. A. de Heer, C. Berger, X. S. Wu et al., “Epitaxial graphene electronic structure and transport,” Journal of Physics D-Applied Physics 43 (37), 374007 (2010).
21.
Zurück zum Zitat R. F. Davis, “Proceedings of the international conference in SiC and related materials – 93,” Institute of Physics Conference Series 137, 1 (1994). R. F. Davis, “Proceedings of the international conference in SiC and related materials – 93,” Institute of Physics Conference Series 137, 1 (1994).
22.
Zurück zum Zitat A. Taylor, Jones, R. M. in Silicon Carbide - A High Temperature Semiconductor, Eds. O’Connor, J. R., Smiltens, J., Pergamon Press, Oxford, London, New York, Paris 1960, 14. A. Taylor, Jones, R. M. in Silicon Carbide - A High Temperature Semiconductor, Eds. O’Connor, J. R., Smiltens, J., Pergamon Press, Oxford, London, New York, Paris 1960, 14.
23.
Zurück zum Zitat A. Bauer, J. Krausslich, L. Dressler et al., “High-precision determination of atomic positions in crystals: The case of 6H- and 4H-SiC,” Physical Review B 57 (5), 2647–2650 (1998).CrossRef A. Bauer, J. Krausslich, L. Dressler et al., “High-precision determination of atomic positions in crystals: The case of 6H- and 4H-SiC,” Physical Review B 57 (5), 2647–2650 (1998).CrossRef
24.
Zurück zum Zitat F. R. Chien, S. R. Nutt, and W. S. Yoo, “Lattice mismatch measurement of epitaxial beta-SiC on alpha-SiC substrates,” Journal of Applied Physics 77 (7), 3138–3145 (1995).CrossRef F. R. Chien, S. R. Nutt, and W. S. Yoo, “Lattice mismatch measurement of epitaxial beta-SiC on alpha-SiC substrates,” Journal of Applied Physics 77 (7), 3138–3145 (1995).CrossRef
25.
Zurück zum Zitat Y. Baskin and L. Meyer, “Lattice constants of graphite at low temperatures,” Physical Review 100 (2), 544–544 (1955).CrossRef Y. Baskin and L. Meyer, “Lattice constants of graphite at low temperatures,” Physical Review 100 (2), 544–544 (1955).CrossRef
26.
Zurück zum Zitat ed. Gary L. Harris “Properties of Silicon Carbide”, INSPEC, the Institution of Electrical Engineers, London 1995. ed. Gary L. Harris “Properties of Silicon Carbide”, INSPEC, the Institution of Electrical Engineers, London 1995.
27.
Zurück zum Zitat A. Powell “Growth of SiC Substrates”, J. Jenny, S. Muller, H. Mcd. Hobgood, V. Tsvetkov, R. Lenoard, and C. Carter, Jr., in “SiC Materials and Devices, vol. 2”, ed. Michael Shur, Sergey Rumyantsev, and Michael Levinshtein, World Scientific, Singapore (2007). A. Powell “Growth of SiC Substrates”, J. Jenny, S. Muller, H. Mcd. Hobgood, V. Tsvetkov, R. Lenoard, and C. Carter, Jr., in “SiC Materials and Devices, vol. 2”, ed. Michael Shur, Sergey Rumyantsev, and Michael Levinshtein, World Scientific, Singapore (2007).
28.
Zurück zum Zitat P. G. Neudeck, W. Huang, and M. Dudley, “Breakdown degradation associated with elementary screw dislocations in 4H-SiC p(+)n junction rectifiers,” Solid-State Electronics 42 (12), 2157–2164 (1998).CrossRef P. G. Neudeck, W. Huang, and M. Dudley, “Breakdown degradation associated with elementary screw dislocations in 4H-SiC p(+)n junction rectifiers,” Solid-State Electronics 42 (12), 2157–2164 (1998).CrossRef
29.
Zurück zum Zitat C. R. Eddy and D. K. Gaskill, “Silicon Carbide as a Platform for Power Electronics,” Science 324 (5933), 1398–1400 (2009).CrossRef C. R. Eddy and D. K. Gaskill, “Silicon Carbide as a Platform for Power Electronics,” Science 324 (5933), 1398–1400 (2009).CrossRef
30.
Zurück zum Zitat K. K. Lew, B. L. VanMil, R. L. Myers-Ward et al., in Silicon Carbide and Related Materials 2006, edited by N. Wright, C. M. Johnson, K. Vassilevski et al. Materials Science Forum (2007), Vol. 556–557, pp. 513–516. K. K. Lew, B. L. VanMil, R. L. Myers-Ward et al., in Silicon Carbide and Related Materials 2006, edited by N. Wright, C. M. Johnson, K. Vassilevski et al. Materials Science Forum (2007), Vol. 556–557, pp. 513–516.
31.
Zurück zum Zitat B. L. VanMil, K. K. Lew, R. L. Myers-Ward et al., “Etch rates near hot-wall CVD growth temperature for Si-face 4H-SiC using H-2 and C3H8,” Journal of Crystal Growth 311 (2), 238–243 (2009).CrossRef B. L. VanMil, K. K. Lew, R. L. Myers-Ward et al., “Etch rates near hot-wall CVD growth temperature for Si-face 4H-SiC using H-2 and C3H8,” Journal of Crystal Growth 311 (2), 238–243 (2009).CrossRef
32.
Zurück zum Zitat B. L. VanMil, R. L. Myers-Ward, J. L. Tedesco et al., in Silicon Carbide and Related Materials 2008, edited by A. PerezTomas, P. Godignon, M. Vellvehi et al. Materials Science Forum (2009), Vol. 615–617, pp. 211–214. B. L. VanMil, R. L. Myers-Ward, J. L. Tedesco et al., in Silicon Carbide and Related Materials 2008, edited by A. PerezTomas, P. Godignon, M. Vellvehi et al. Materials Science Forum (2009), Vol. 615–617, pp. 211–214.
33.
Zurück zum Zitat A. Mattausch and O. Pankratov, “Ab initio study of graphene on SiC,” Physical Review Letters 99 (7), 076802 (2007). A. Mattausch and O. Pankratov, “Ab initio study of graphene on SiC,” Physical Review Letters 99 (7), 076802 (2007).
34.
Zurück zum Zitat F. Varchon, R. Feng, J. Hass et al., “Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate,” Physical Review Letters 99 (12), 126805 (2007). F. Varchon, R. Feng, J. Hass et al., “Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate,” Physical Review Letters 99 (12), 126805 (2007).
35.
Zurück zum Zitat L. Magaud, F. Hiebel, F. Varchon et al., “Graphene on the C-terminated SiC (0001) surface: An ab initio study,” Physical Review B 79 (16) (2009). L. Magaud, F. Hiebel, F. Varchon et al., “Graphene on the C-terminated SiC (0001) surface: An ab initio study,” Physical Review B 79 (16) (2009).
36.
Zurück zum Zitat Shu Xu Thushari Jayasekera, K.W. Kim, and M.Buongiorno Nardelli, “Electronic properties of the Graphene/6H-SiC(000–1) interface: a first principles study,” Physical Review B 84, 035442 (2011). Shu Xu Thushari Jayasekera, K.W. Kim, and M.Buongiorno Nardelli, “Electronic properties of the Graphene/6H-SiC(000–1) interface: a first principles study,” Physical Review B 84, 035442 (2011).
37.
Zurück zum Zitat A. J. Van Bommel, J. E. Crombeen, and A. Van Tooren, “LEED and Auger-Electron Observations of SiC (0001) Surface,” Surface Science 48, 463–472 (1975). A. J. Van Bommel, J. E. Crombeen, and A. Van Tooren, “LEED and Auger-Electron Observations of SiC (0001) Surface,” Surface Science 48, 463–472 (1975).
38.
Zurück zum Zitat X. S. Wu, Y. K. Hu, M. Ruan et al., “Half integer quantum Hall effect in high mobility single layer epitaxial graphene,” Applied Physics Letters 95 (22), 223108 (2009). X. S. Wu, Y. K. Hu, M. Ruan et al., “Half integer quantum Hall effect in high mobility single layer epitaxial graphene,” Applied Physics Letters 95 (22), 223108 (2009).
39.
Zurück zum Zitat M. L. Sadowski, G. Martinez, M. Potemski et al., “Landau level spectroscopy of ultrathin graphite layers,” Physical Review Letters 97 (26), 266405 (2006). M. L. Sadowski, G. Martinez, M. Potemski et al., “Landau level spectroscopy of ultrathin graphite layers,” Physical Review Letters 97 (26), 266405 (2006).
40.
Zurück zum Zitat private communication G. G. Jernigan, 2009. private communication G. G. Jernigan, 2009.
41.
Zurück zum Zitat S. K. Lilov, “Thermodynamic analysis of the gas-phase at the dissociative evaporation of silicon-carbide,” Crystal Research and Technology 28 (4), 503–510 (1993).CrossRef S. K. Lilov, “Thermodynamic analysis of the gas-phase at the dissociative evaporation of silicon-carbide,” Crystal Research and Technology 28 (4), 503–510 (1993).CrossRef
42.
Zurück zum Zitat T. Seyller, K. V. Emtsev, K. Gao et al., “Structural and electronic properties of graphite layers grown on SiC(0001),” Surface Science 600 (18), 3906–3911 (2006).CrossRef T. Seyller, K. V. Emtsev, K. Gao et al., “Structural and electronic properties of graphite layers grown on SiC(0001),” Surface Science 600 (18), 3906–3911 (2006).CrossRef
43.
Zurück zum Zitat W. A. de Heer, C. Berger, X. S. Wu et al., “Epitaxial graphene,” Solid State Communications 143 (1–2), 92–100 (2007).CrossRef W. A. de Heer, C. Berger, X. S. Wu et al., “Epitaxial graphene,” Solid State Communications 143 (1–2), 92–100 (2007).CrossRef
44.
Zurück zum Zitat C. Riedl, U. Starke, J. Bernhardt et al., “Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces,” Physical Review B 76 (24), 245406 (2007). C. Riedl, U. Starke, J. Bernhardt et al., “Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces,” Physical Review B 76 (24), 245406 (2007).
45.
Zurück zum Zitat G. Gu, S. Nie, R. M. Feenstra et al., “Field effect in epitaxial graphene on a silicon carbide substrate,” Applied Physics Letters 90 (25), 253507 (2007). G. Gu, S. Nie, R. M. Feenstra et al., “Field effect in epitaxial graphene on a silicon carbide substrate,” Applied Physics Letters 90 (25), 253507 (2007).
46.
Zurück zum Zitat G. G. Jernigan, B. L. VanMil, J. L. Tedesco et al., “Comparison of Epitaxial Graphene on Si-face and C-face 4H SiC Formed by Ultrahigh Vacuum and RF Furnace Production,” Nano Letters 9 (7), 2605–2609 (2009).CrossRef G. G. Jernigan, B. L. VanMil, J. L. Tedesco et al., “Comparison of Epitaxial Graphene on Si-face and C-face 4H SiC Formed by Ultrahigh Vacuum and RF Furnace Production,” Nano Letters 9 (7), 2605–2609 (2009).CrossRef
47.
Zurück zum Zitat V. W. Brar, Y. Zhang, Y. Yayon et al., “Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC,” Applied Physics Letters 91 (12), 122102 (2007). V. W. Brar, Y. Zhang, Y. Yayon et al., “Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC,” Applied Physics Letters 91 (12), 122102 (2007).
48.
Zurück zum Zitat P. Mallet, F. Varchon, C. Naud et al., “Electron states of mono- and bilayer graphene on SiC probed by scanning-tunneling microscopy,” Physical Review B 76 (4), 041403 (2007). P. Mallet, F. Varchon, C. Naud et al., “Electron states of mono- and bilayer graphene on SiC probed by scanning-tunneling microscopy,” Physical Review B 76 (4), 041403 (2007).
49.
Zurück zum Zitat K. V. Emtsev, F. Speck, T. Seyller et al., “Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study,” Physical Review B 77 (15), 155303 (2008). K. V. Emtsev, F. Speck, T. Seyller et al., “Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study,” Physical Review B 77 (15), 155303 (2008).
50.
Zurück zum Zitat D. Graf, F. Molitor, K. Ensslin et al., “Raman imaging of graphene,” Solid State Communications 143 (1–2), 44–46 (2007).CrossRef D. Graf, F. Molitor, K. Ensslin et al., “Raman imaging of graphene,” Solid State Communications 143 (1–2), 44–46 (2007).CrossRef
51.
Zurück zum Zitat T. Ohta, A. Bostwick, J. L. McChesney et al., “Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy,” Physical Review Letters 98 (20), 206802 (2007). T. Ohta, A. Bostwick, J. L. McChesney et al., “Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy,” Physical Review Letters 98 (20), 206802 (2007).
52.
Zurück zum Zitat A. Bostwick, T. Ohta, J. L. McChesney et al., “Symmetry breaking in few layer graphene films,” New Journal of Physics 9, 385 (2007). A. Bostwick, T. Ohta, J. L. McChesney et al., “Symmetry breaking in few layer graphene films,” New Journal of Physics 9, 385 (2007).
53.
Zurück zum Zitat J. Hass, J. E. Millan-Otoya, P. N. First et al., “Interface structure of epitaxial graphene grown on 4H-SiC(0001),” Physical Review B 78 (20), 205424 (2008). J. Hass, J. E. Millan-Otoya, P. N. First et al., “Interface structure of epitaxial graphene grown on 4H-SiC(0001),” Physical Review B 78 (20), 205424 (2008).
54.
Zurück zum Zitat G. M. Rutter, N. P. Guisinger, J. N. Crain et al., “Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy,” Physical Review B 76 (23), 235416 (2007). G. M. Rutter, N. P. Guisinger, J. N. Crain et al., “Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy,” Physical Review B 76 (23), 235416 (2007).
55.
Zurück zum Zitat E. Rollings, G. H. Gweon, S. Y. Zhou et al., “Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate,” Journal of Physics and Chemistry of Solids 67 (9–10), 2172–2177 (2006).CrossRef E. Rollings, G. H. Gweon, S. Y. Zhou et al., “Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate,” Journal of Physics and Chemistry of Solids 67 (9–10), 2172–2177 (2006).CrossRef
56.
Zurück zum Zitat J. Kedzierski, P. L. Hsu, P. Healey et al., “Epitaxial graphene transistors on SIC substrates,” IEEE Transactions on Electron Devices 55 (8), 2078–2085 (2008).CrossRef J. Kedzierski, P. L. Hsu, P. Healey et al., “Epitaxial graphene transistors on SIC substrates,” IEEE Transactions on Electron Devices 55 (8), 2078–2085 (2008).CrossRef
57.
Zurück zum Zitat M. Kusunoki, T. Suzuki, T. Hirayama et al., “A formation mechanism of carbon nanotube films on SiC(0001),” Applied Physics Letters 77 (4), 531–533 (2000).CrossRef M. Kusunoki, T. Suzuki, T. Hirayama et al., “A formation mechanism of carbon nanotube films on SiC(0001),” Applied Physics Letters 77 (4), 531–533 (2000).CrossRef
58.
Zurück zum Zitat A. J. Strudwick G. L. Creeth, J. T. Sadowski, and C. H. Marrows, “Surface morphology and transport studies of epitaxial graphene on SiC(\( 000\bar{1} \)),” Physical Review B 43, 195440 (2010). A. J. Strudwick G. L. Creeth, J. T. Sadowski, and C. H. Marrows, “Surface morphology and transport studies of epitaxial graphene on SiC(\( 000\bar{1} \)),” Physical Review B 43, 195440 (2010).
59.
Zurück zum Zitat U. Starke, in Recent Major Advances in SiC, edited by H. Matsunami W. Choyke, and G. Pensl (Springer Scientific, 2003), p. 281. U. Starke, in Recent Major Advances in SiC, edited by H. Matsunami W. Choyke, and G. Pensl (Springer Scientific, 2003), p. 281.
60.
Zurück zum Zitat W. Strupinski, R. Bozek, J. Borysiuk et al., in Silicon Carbide and Related Materials 2008, edited by A. PerezTomas, P. Godignon, M. Vellvehi et al. (2009), Vol. 615–617, pp. 199–202. W. Strupinski, R. Bozek, J. Borysiuk et al., in Silicon Carbide and Related Materials 2008, edited by A. PerezTomas, P. Godignon, M. Vellvehi et al. (2009), Vol. 615–617, pp. 199–202.
61.
Zurück zum Zitat M. L. Bolen, S. E. Harrison, L. B. Biedermann et al., “Graphene formation mechanisms on 4H-SiC(0001),” Physical Review B 80 (11), 115433 (2009). M. L. Bolen, S. E. Harrison, L. B. Biedermann et al., “Graphene formation mechanisms on 4H-SiC(0001),” Physical Review B 80 (11), 115433 (2009).
62.
Zurück zum Zitat J. Borysiuk, R. Bozek, W. Strupinski et al., “Transmission electron microscopy and scanning tunneling microscopy investigations of graphene on 4H-SiC(0001),” Journal of Applied Physics 105 (2), 023503 (2009). J. Borysiuk, R. Bozek, W. Strupinski et al., “Transmission electron microscopy and scanning tunneling microscopy investigations of graphene on 4H-SiC(0001),” Journal of Applied Physics 105 (2), 023503 (2009).
63.
Zurück zum Zitat J. Borysiuk, W. Strupinski, R. Bozek et al., in Silicon Carbide and Related Materials 2008, edited by A. PerezTomas, P. Godignon, M. Vellvehi et al. (2009), Vol. 615–617, pp. 207–210. J. Borysiuk, W. Strupinski, R. Bozek et al., in Silicon Carbide and Related Materials 2008, edited by A. PerezTomas, P. Godignon, M. Vellvehi et al. (2009), Vol. 615–617, pp. 207–210.
64.
Zurück zum Zitat W. Norimatsu and M. Kusunoki, “Transitional structures of the interface between graphene and 6H-SiC (0001),” Chemical Physics Letters 468 (1–3), 52–56 (2009).CrossRef W. Norimatsu and M. Kusunoki, “Transitional structures of the interface between graphene and 6H-SiC (0001),” Chemical Physics Letters 468 (1–3), 52–56 (2009).CrossRef
65.
Zurück zum Zitat T. Shen, J. J. Gu, M. Xu et al., “Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001),” Applied Physics Letters 95 (17), 172105 (2009). T. Shen, J. J. Gu, M. Xu et al., “Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001),” Applied Physics Letters 95 (17), 172105 (2009).
66.
Zurück zum Zitat J. L. Tedesco, B. L. VanMil, R. L. Myers-Ward et al., “Hall effect mobility of epitaxial graphene grown on silicon carbide,” Applied Physics Letters 95 (12), 122102 (2009). J. L. Tedesco, B. L. VanMil, R. L. Myers-Ward et al., “Hall effect mobility of epitaxial graphene grown on silicon carbide,” Applied Physics Letters 95 (12), 122102 (2009).
67.
Zurück zum Zitat J. S. Moon, D. Curtis, M. Hu et al., “Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates,” IEEE Electron Device Letters 30 (6), 650–652 (2009).CrossRef J. S. Moon, D. Curtis, M. Hu et al., “Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates,” IEEE Electron Device Letters 30 (6), 650–652 (2009).CrossRef
68.
Zurück zum Zitat M. K. Yakes, D. Gunlycke, J. L. Tedesco et al., “Conductance Anisotropy in Epitaxial Graphene Sheets Generated by Substrate Interactions,” Nano Letters 10 (5), 1559–1562 (2010). M. K. Yakes, D. Gunlycke, J. L. Tedesco et al., “Conductance Anisotropy in Epitaxial Graphene Sheets Generated by Substrate Interactions,” Nano Letters 10 (5), 1559–1562 (2010).
69.
Zurück zum Zitat S. Shivaraman, M. V. S. Chandrashekhar, J. J. Boeckl et al., “Thickness Estimation of Epitaxial Graphene on SiC Using Attenuation of Substrate Raman Intensity,” Journal of Electronic Materials 38 (6), 725–730 (2009).CrossRef S. Shivaraman, M. V. S. Chandrashekhar, J. J. Boeckl et al., “Thickness Estimation of Epitaxial Graphene on SiC Using Attenuation of Substrate Raman Intensity,” Journal of Electronic Materials 38 (6), 725–730 (2009).CrossRef
70.
Zurück zum Zitat L. B. Biedermann, M. L. Bolen, M. A. Capano et al., “Insights into few-layer epitaxial graphene growth on 4H-SiC(0001)over-bar substrates from STM studies,” Physical Review B 79 (12), 125411 (2009). L. B. Biedermann, M. L. Bolen, M. A. Capano et al., “Insights into few-layer epitaxial graphene growth on 4H-SiC(0001)over-bar substrates from STM studies,” Physical Review B 79 (12), 125411 (2009).
71.
Zurück zum Zitat G. Prakash, M. A. Capano, M. L. Bolen et al., “AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4 H-SiC(\( 000\bar{1} \)),” Carbon 48 (9), 2383–2393 (2010). G. Prakash, M. A. Capano, M. L. Bolen et al., “AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4 H-SiC(\( 000\bar{1} \)),” Carbon 48 (9), 2383–2393 (2010).
72.
Zurück zum Zitat G. Prakash, M. L. Bolen, R. Colby et al., “Nanomanipulation of ridges in few-layer epitaxial graphene grown on the carbon face of 4H-SiC,” New Journal of Physics 12, 125009 (2010). G. Prakash, M. L. Bolen, R. Colby et al., “Nanomanipulation of ridges in few-layer epitaxial graphene grown on the carbon face of 4H-SiC,” New Journal of Physics 12, 125009 (2010).
73.
Zurück zum Zitat J. Hass, F. Varchon, J. E. Millan-Otoya et al., “Why multilayer graphene on 4H-SiC (\( 000\bar{1} \)) behaves like a single sheet of graphene,” Physical Review Letters 100 (12), 125504 (2010). J. Hass, F. Varchon, J. E. Millan-Otoya et al., “Why multilayer graphene on 4H-SiC (\( 000\bar{1} \)) behaves like a single sheet of graphene,” Physical Review Letters 100 (12), 125504 (2010).
74.
Zurück zum Zitat Luxmi, N. Srivastava, G. He et al., “Comparison of graphene formation on C-face and Si-face SiC {0001} surfaces,” Physical Review B 82 (23), 235406 (2010). Luxmi, N. Srivastava, G. He et al., “Comparison of graphene formation on C-face and Si-face SiC {0001} surfaces,” Physical Review B 82 (23), 235406 (2010).
75.
Zurück zum Zitat D. L. Miller, K. D. Kubista, G. M. Rutter et al., “Observing the Quantization of Zero Mass Carriers in Graphene,” Science 324 (5929), 924–927 (2009).CrossRef D. L. Miller, K. D. Kubista, G. M. Rutter et al., “Observing the Quantization of Zero Mass Carriers in Graphene,” Science 324 (5929), 924–927 (2009).CrossRef
76.
Zurück zum Zitat M. Sprinkle, D. Siegel, Y. Hu et al., “First Direct Observation of a Nearly Ideal Graphene Band Structure,” Physical Review Letters 103 (22), 226803 (2009). M. Sprinkle, D. Siegel, Y. Hu et al., “First Direct Observation of a Nearly Ideal Graphene Band Structure,” Physical Review Letters 103 (22), 226803 (2009).
77.
Zurück zum Zitat J. Hass, R. Feng, J. E. Millan-Otoya et al., “Structural properties of the multilayer graphene/4H-SiC(\( 000\bar{1} \)) system as determined by surface x-ray diffraction,” Physical Review B 75 (21), 214109 (2010). J. Hass, R. Feng, J. E. Millan-Otoya et al., “Structural properties of the multilayer graphene/4H-SiC(\( 000\bar{1} \)) system as determined by surface x-ray diffraction,” Physical Review B 75 (21), 214109 (2010).
78.
Zurück zum Zitat C. Berger, Z. M. Song, X. B. Li et al., “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312 (5777), 1191–1196 (2006).CrossRef C. Berger, Z. M. Song, X. B. Li et al., “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312 (5777), 1191–1196 (2006).CrossRef
79.
Zurück zum Zitat J. H. Chen, C. Jang, S. D. Xiao et al., “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature Nanotechnology 3 (4), 206–209 (2008).CrossRef J. H. Chen, C. Jang, S. D. Xiao et al., “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature Nanotechnology 3 (4), 206–209 (2008).CrossRef
80.
Zurück zum Zitat K. I. Bolotin, K. J. Sikes, Z. Jiang et al., “Ultrahigh electron mobility in suspended graphene,” Solid State Communications 146 (9–10), 351–355 (2008).CrossRef K. I. Bolotin, K. J. Sikes, Z. Jiang et al., “Ultrahigh electron mobility in suspended graphene,” Solid State Communications 146 (9–10), 351–355 (2008).CrossRef
81.
Zurück zum Zitat M. L. Sadowski, G. Martinez, M. Potemski et al., “Magnetospectroscopy of epitaxial few-layer graphene,” Solid State Communications 143 (1–2), 123–125 (2007).CrossRef M. L. Sadowski, G. Martinez, M. Potemski et al., “Magnetospectroscopy of epitaxial few-layer graphene,” Solid State Communications 143 (1–2), 123–125 (2007).CrossRef
82.
Zurück zum Zitat C. Berger, Z. M. Song, X. B. Li et al., “Magnetotransport in high mobility epitaxial graphene,” Physica Status Solidi a-Applications and Materials Science 204 (6), 1746–1750 (2007).CrossRef C. Berger, Z. M. Song, X. B. Li et al., “Magnetotransport in high mobility epitaxial graphene,” Physica Status Solidi a-Applications and Materials Science 204 (6), 1746–1750 (2007).CrossRef
83.
Zurück zum Zitat D. Sun, C. Divin, C. Berger et al., “Spectroscopic Measurement of Interlayer Screening in Multilayer Epitaxial Graphene,” Physical Review Letters 104 (13), 136802 (2010). D. Sun, C. Divin, C. Berger et al., “Spectroscopic Measurement of Interlayer Screening in Multilayer Epitaxial Graphene,” Physical Review Letters 104 (13), 136802 (2010).
84.
Zurück zum Zitat M. Orlita, C. Faugeras, P. Plochocka et al., “Approaching the Dirac Point in High-Mobility Multilayer Epitaxial Graphene,” Physical Review Letters 101 (26), 267101 (2008). M. Orlita, C. Faugeras, P. Plochocka et al., “Approaching the Dirac Point in High-Mobility Multilayer Epitaxial Graphene,” Physical Review Letters 101 (26), 267101 (2008).
85.
Zurück zum Zitat I. Langmuir, “Convection and conduction of heat in gases,” Physical Review 34 (6) (1912); G. R. Fonda, “Evaporation of tungsten under various pressures of argon,” Physical Review 31 (2), 260–266 (1928). I. Langmuir, “Convection and conduction of heat in gases,” Physical Review 34 (6) (1912); G. R. Fonda, “Evaporation of tungsten under various pressures of argon,” Physical Review 31 (2), 260–266 (1928).
86.
Zurück zum Zitat J. L. Tedesco, B. L. VanMil, R. L. Myers-Ward et al., in Graphene and Emerging Materials for Post-Cmos Applications, edited by Y. Obeng, S. DeGendt, P. Srinivasan et al. (2009), Vol. 19, pp. 137–150. J. L. Tedesco, B. L. VanMil, R. L. Myers-Ward et al., in Graphene and Emerging Materials for Post-Cmos Applications, edited by Y. Obeng, S. DeGendt, P. Srinivasan et al. (2009), Vol. 19, pp. 137–150.
87.
Zurück zum Zitat C. Virojanadara, M. Syvajarvi, R. Yakimova et al., “Homogeneous large-area graphene layer growth on 6H-SiC(0001),” Physical Review B 78 (24), 245403 (2008). C. Virojanadara, M. Syvajarvi, R. Yakimova et al., “Homogeneous large-area graphene layer growth on 6H-SiC(0001),” Physical Review B 78 (24), 245403 (2008).
88.
Zurück zum Zitat C. Virojanadara, R. Yakimova, J. R. Osiecki et al., “Substrate orientation: A way towards higher quality monolayer graphene growth on 6H-SiC(0001),” Surface Science 603 (15), L87–L90 (2009).CrossRef C. Virojanadara, R. Yakimova, J. R. Osiecki et al., “Substrate orientation: A way towards higher quality monolayer graphene growth on 6H-SiC(0001),” Surface Science 603 (15), L87–L90 (2009).CrossRef
89.
Zurück zum Zitat J. Jobst, D. Waldmann, F. Speck et al., “Quantum oscillations and quantum Hall effect in epitaxial graphene,” Physical Review B 81 (19), 195434 (2010). J. Jobst, D. Waldmann, F. Speck et al., “Quantum oscillations and quantum Hall effect in epitaxial graphene,” Physical Review B 81 (19), 195434 (2010).
90.
Zurück zum Zitat A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov et al., “Towards a quantum resistance standard based on epitaxial graphene,” Nature Nanotechnology 5 (3), 186–189 (2010). A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov et al., “Towards a quantum resistance standard based on epitaxial graphene,” Nature Nanotechnology 5 (3), 186–189 (2010).
91.
Zurück zum Zitat W. Pan, S. W. Howell, A. J. Ross et al., “Observation of the integer quantum Hall effect in high quality, uniform wafer-scale epitaxial graphene films,” Applied Physics Letters 97 (25), 252101 (2010). W. Pan, S. W. Howell, A. J. Ross et al., “Observation of the integer quantum Hall effect in high quality, uniform wafer-scale epitaxial graphene films,” Applied Physics Letters 97 (25), 252101 (2010).
92.
Zurück zum Zitat T. Filleter, K. V. Emtsev, T. Seyller et al., “Local work function measurements of epitaxial graphene,” Applied Physics Letters 13, 133117 (2008). T. Filleter, K. V. Emtsev, T. Seyller et al., “Local work function measurements of epitaxial graphene,” Applied Physics Letters 13, 133117 (2008).
93.
Zurück zum Zitat J. S. Moon, D. Curtis, S. Bui et al., “Top-Gated Epitaxial Graphene FETs on Si-Face SiC Wafers With a Peak Transconductance of 600 mS/mm,” IEEE Electron Device Letters 31 (4), 260–262 (2010). J. S. Moon, D. Curtis, S. Bui et al., “Top-Gated Epitaxial Graphene FETs on Si-Face SiC Wafers With a Peak Transconductance of 600 mS/mm,” IEEE Electron Device Letters 31 (4), 260–262 (2010).
94.
Zurück zum Zitat Damon B. Farmer Yu-Ming Lin, Keith A. Jenkins, Joseph L. Tedesco, Rachael L. Myers-Ward, Charles R. Eddy, Jr., D. Kurt Gaskill, Yanquing Wu, Phaedon Avouris, and Christos Dimitrakopoulos, “Enhanced Performance in Epitaxial Graphene FETs with Optimized Channel Morphology,” Applied Physics Letters submitted (2011). Damon B. Farmer Yu-Ming Lin, Keith A. Jenkins, Joseph L. Tedesco, Rachael L. Myers-Ward, Charles R. Eddy, Jr., D. Kurt Gaskill, Yanquing Wu, Phaedon Avouris, and Christos Dimitrakopoulos, “Enhanced Performance in Epitaxial Graphene FETs with Optimized Channel Morphology,” Applied Physics Letters submitted (2011).
95.
Zurück zum Zitat J. S. Moon, D. Curtis, D. Zehnder et al., “Low-Phase-Noise Graphene FETs in Ambipolar RF Applications,” IEEE Electron Device Letters 32 (3), 270–272 (2011). J. S. Moon, D. Curtis, D. Zehnder et al., “Low-Phase-Noise Graphene FETs in Ambipolar RF Applications,” IEEE Electron Device Letters 32 (3), 270–272 (2011).
96.
Zurück zum Zitat J. L. Tedesco, G. G. Jernigan, J. C. Culbertson et al., “Morphology characterization of argon-mediated epitaxial graphene on C-face SiC,” Applied Physics Letters 96 (22), 222103 (2010). J. L. Tedesco, G. G. Jernigan, J. C. Culbertson et al., “Morphology characterization of argon-mediated epitaxial graphene on C-face SiC,” Applied Physics Letters 96 (22), 222103 (2010).
97.
Zurück zum Zitat J. K. Hite, M. E. Twigg, J. L. Tedesco et al., “Epitaxial Graphene Nucleation on C-Face Silicon Carbide,” Nano Letters 11 (3), 1190–1194 (2011). J. K. Hite, M. E. Twigg, J. L. Tedesco et al., “Epitaxial Graphene Nucleation on C-Face Silicon Carbide,” Nano Letters 11 (3), 1190–1194 (2011).
98.
Zurück zum Zitat J. Borysiuk, R. Bozek, K. Grodecki et al., “Transmission electron microscopy investigations of epitaxial graphene on C-terminated 4H-SiC,” Journal of Applied Physics 108 (1), 013518 (2010). J. Borysiuk, R. Bozek, K. Grodecki et al., “Transmission electron microscopy investigations of epitaxial graphene on C-terminated 4H-SiC,” Journal of Applied Physics 108 (1), 013518 (2010).
99.
Zurück zum Zitat J. Borysiuk, J. Soltys, and J. Piechota, “Stacking sequence dependence of graphene layers on SiC (\( 000\bar{1} \))-Experimental and theoretical investigation,” Journal of Applied Physics 109 (9), 093523 (2011). J. Borysiuk, J. Soltys, and J. Piechota, “Stacking sequence dependence of graphene layers on SiC (\( 000\bar{1} \))-Experimental and theoretical investigation,” Journal of Applied Physics 109 (9), 093523 (2011).
100.
Zurück zum Zitat Y. M. Lin, C. Dimitrakopoulos, D. B. Farmer et al., “Multicarrier transport in epitaxial multilayer graphene,” Applied Physics Letters 97 (11), 112107 (2010). Y. M. Lin, C. Dimitrakopoulos, D. B. Farmer et al., “Multicarrier transport in epitaxial multilayer graphene,” Applied Physics Letters 97 (11), 112107 (2010).
101.
Zurück zum Zitat M. Orlita, C. Faugeras, J. Borysiuk et al., “Magneto-optics of bilayer inclusions in multilayered epitaxial graphene on the carbon face of SiC,” Physical Review B 83 (12), 125302 (2011). M. Orlita, C. Faugeras, J. Borysiuk et al., “Magneto-optics of bilayer inclusions in multilayered epitaxial graphene on the carbon face of SiC,” Physical Review B 83 (12), 125302 (2011).
Metadaten
Titel
Formation of Epitaxial Graphene
verfasst von
D. Kurt Gaskill
Luke O. Nyakiti
Copyright-Jahr
2012
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4614-0548-1_6