Skip to main content
Erschienen in: Microsystem Technologies 7-8/2012

01.08.2012 | Technical Paper

Hysteresis correction of tactile sensor response with a generalized Prandtl–Ishlinskii model

verfasst von: José A. Sánchez-Durán, Óscar Oballe-Peinado, Julián Castellanos-Ramos, Fernando Vidal-Verdú

Erschienen in: Microsystem Technologies | Ausgabe 7-8/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tactile sensors are basically arrays of force sensors. Most of these force sensors are made of polymers or conductive rubber at lower cost, especially in the case of large area low-medium resolution tactile sensors. The consequence of such a decrease in cost and complexity is a worsening in performance. Hysteresis and drift are two main sources of error. Other tactile sensors do not present such limitations per se, however they are covered by a protective elastic layer in their final location and this covering can also lead to limitations. This paper presents a method to reduce the error caused by hysteresis in tactile sensors. This method is based on the generalized Prandtl–Ishlinskii model that has been applied to characterize hysteresis and saturation nonlinearities in smart actuators. The approximation error depends on several parameters as well as on the envelope functions that are chosen. Different alternatives are explored in the paper. Moreover, the model can also be inverted. This inverse model allows the force values to be obtained from the tactile sensor output while reducing the errors caused by hysteresis. In this paper the results of such an inversion are compared with other alternatives to register the data that do not compensate hysteresis. The average value of the hysteresis error measured in the experimental curve is 7.20% for an input range of 206 kPa, while this error is 1.51% following the compensation procedure. Since the implementation of tactile sensors usually results in the electronics being close to the raw sensor, and this hardware is also commonly based on a microcontroller or even on a FPGA, it is possible to add the algorithms presented in this paper to the set of compensation and calibration procedures to run in the smart sensor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al Janaideh M, Rakheja S, Su C-Y (2010) An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Trans Mechatro 16(4):734–744. doi:10.1109/TMECH.2010.2052366 CrossRef Al Janaideh M, Rakheja S, Su C-Y (2010) An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Trans Mechatro 16(4):734–744. doi:10.​1109/​TMECH.​2010.​2052366 CrossRef
Zurück zum Zitat Brokate M, Sprekels J (1996) Hysteresis and phase transitions. Springer-Verlag, New YorkMATHCrossRef Brokate M, Sprekels J (1996) Hysteresis and phase transitions. Springer-Verlag, New YorkMATHCrossRef
Zurück zum Zitat Castellanos-Ramos J, Navas-González R, Macicior H, Sikora T, Ochoteco E, Vidal-Verdú F (2010) Tactile sensors based on conductive polymers. Microsyst Technol 16(5):765–776. doi:10.1007/s00542-009-0958-3 CrossRef Castellanos-Ramos J, Navas-González R, Macicior H, Sikora T, Ochoteco E, Vidal-Verdú F (2010) Tactile sensors based on conductive polymers. Microsyst Technol 16(5):765–776. doi:10.​1007/​s00542-009-0958-3 CrossRef
Zurück zum Zitat Kuhnen K, Janocha H (2001) Inverse feedfordward controller for complex hysteretic nonlinearities in smart-material systems. Control Intell Sys 29(3):74–83 Kuhnen K, Janocha H (2001) Inverse feedfordward controller for complex hysteretic nonlinearities in smart-material systems. Control Intell Sys 29(3):74–83
Zurück zum Zitat Oballe-Peinado O, Castellanos-Ramos J, Hidalgo-López JA, Vidal-Verdú F (2009) Direct interfaces for smart skins based on FPGAs. Proc SPIE 7365:73650C. doi:10.1117/12.821642 CrossRef Oballe-Peinado O, Castellanos-Ramos J, Hidalgo-López JA, Vidal-Verdú F (2009) Direct interfaces for smart skins based on FPGAs. Proc SPIE 7365:73650C. doi:10.​1117/​12.​821642 CrossRef
Zurück zum Zitat Sánchez-Durán J A, Hidalgo-López J A, Vidal-Verdú F, Ochoteco E (2010) Experimental evaluation of the incidence of tactile sensor limitations on application parameters. In: IEEE Instrumentation and Measurement Society, Sensors Application Symposium (SAS) 175–178. doi: 10.1109/SAS.2010.5439424 Sánchez-Durán J A, Hidalgo-López J A, Vidal-Verdú F, Ochoteco E (2010) Experimental evaluation of the incidence of tactile sensor limitations on application parameters. In: IEEE Instrumentation and Measurement Society, Sensors Application Symposium (SAS) 175–178. doi: 10.​1109/​SAS.​2010.​5439424
Zurück zum Zitat Sánchez-Durán JA, Oballe-Peinado O, Castellanos-Ramos J, Vidal-Verdú F (2011) Hysteresis correction of tactile sensor response with a generalized Prandtl–Ishlinskii model. Proc SPIE 8066:80662L. doi:10.1117/12.886744 CrossRef Sánchez-Durán JA, Oballe-Peinado O, Castellanos-Ramos J, Vidal-Verdú F (2011) Hysteresis correction of tactile sensor response with a generalized Prandtl–Ishlinskii model. Proc SPIE 8066:80662L. doi:10.​1117/​12.​886744 CrossRef
Zurück zum Zitat Vidal-Verdú F, Oballe-Peinado O, Sánchez-Durán JA, Castellanos-Ramos J, Navas-González R (2011) Three realizations and comparison of hardware for piezoresistive tactile sensors. Sensors 11(3):3249–3266CrossRef Vidal-Verdú F, Oballe-Peinado O, Sánchez-Durán JA, Castellanos-Ramos J, Navas-González R (2011) Three realizations and comparison of hardware for piezoresistive tactile sensors. Sensors 11(3):3249–3266CrossRef
Zurück zum Zitat Visintin A (1994) Differential models of hysteresis. Springer-Verlag, BerlinMATH Visintin A (1994) Differential models of hysteresis. Springer-Verlag, BerlinMATH
Zurück zum Zitat Zareinejad M, Rezaei SM, Ghidary SS, Abdullah A, Motamedi M (2009) Robust impedance control of a piezoelectric stage under thermal and external load disturbances. Control Cybern 38(3):635–648MathSciNet Zareinejad M, Rezaei SM, Ghidary SS, Abdullah A, Motamedi M (2009) Robust impedance control of a piezoelectric stage under thermal and external load disturbances. Control Cybern 38(3):635–648MathSciNet
Metadaten
Titel
Hysteresis correction of tactile sensor response with a generalized Prandtl–Ishlinskii model
verfasst von
José A. Sánchez-Durán
Óscar Oballe-Peinado
Julián Castellanos-Ramos
Fernando Vidal-Verdú
Publikationsdatum
01.08.2012
Verlag
Springer-Verlag
Erschienen in
Microsystem Technologies / Ausgabe 7-8/2012
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-012-1455-7

Weitere Artikel der Ausgabe 7-8/2012

Microsystem Technologies 7-8/2012 Zur Ausgabe