Skip to main content

2015 | OriginalPaper | Buchkapitel

5. Minimum Energy Dissipation Rate Theory and Its Applications for Water Resources Engineering

verfasst von : Guobin Xu, PhD, Chih Ted Yang, PhD, PE, D.WRE, Lina Zhao

Erschienen in: Advances in Water Resources Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Minimum energy dissipation rate principle can be derived from minimum entropy production principle. Minimum entropy production principle is equivalent to the minimum energy dissipation rate principle. The concept of minimum energy dissipation rate principle is that, when an open system is at a steady nonequilibrium state, the energy dissipation rate is at its minimum value. The minimum value depends on the constraints applied to the system. If the system deviates from the steady nonequilibrium state, it will adjust itself to reach a steady nonequilibrium state. The energy dissipation rate will reach a minimum value again. In order to verify the fluid motion following minimum energy dissipation rate principle, re-normalisation group (RNG) k -ε turbulence model and general moving object (GMO) model of Flow-3D were applied to simulate fluid motion in a straight rectangular flume. The results show that fluid motion satisfies the minimum energy dissipation rate principle. Variations of energy dissipation rate of alluvial rivers have been verified with field data. When a river system is at a relative equilibrium state, the value of its energy dissipation rate is at minimum. The minimum value depends on the constraints applied to the river system. However, due to the dynamic nature of a river, the minimum value may vary around its average value. When a river system evolves from a relative state of equilibrium to another state, the process is very complicated. The energy dissipation rate does not necessarily decrease monotonically with respect to time. When a system is at a new relative state of equilibrium, the energy dissipation rate must be at a minimum value compatible with the constraints applied to the system. Hydraulic geometry relationships can be derived from the minimum energy dissipation rate principle. Combining the minimum energy dissipation rate principle with optimization technology as the objective function under the given constraints, the optimum design mathematical models can be developed for a diversion headwork bend structure and stable channel design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yang, C. T. (1971). Potential energy and stream morphology. Water Resources Research, 7(2), 311–322.CrossRef Yang, C. T. (1971). Potential energy and stream morphology. Water Resources Research, 7(2), 311–322.CrossRef
2.
Zurück zum Zitat Yang, C. T. (1971). Formation of riffles and pools. Water Resources Research, 7(6), 1567–1574.CrossRef Yang, C. T. (1971). Formation of riffles and pools. Water Resources Research, 7(6), 1567–1574.CrossRef
3.
Zurück zum Zitat Yang, C. T. (1972). Unit stream power and sediment transport. Journal of the Hydraulics Division, 98(HY10), 1805–1826. Yang, C. T. (1972). Unit stream power and sediment transport. Journal of the Hydraulics Division, 98(HY10), 1805–1826.
4.
Zurück zum Zitat Yang, C. T. (1973). Incipient motion and sediment transport. Journal of the Hydraulics Division, 99(HY10), 1679–1704. Yang, C. T. (1973). Incipient motion and sediment transport. Journal of the Hydraulics Division, 99(HY10), 1679–1704.
5.
Zurück zum Zitat Yang, C. T., & Stall, J. B. (1976). Applicability of unit stream power equation. Journal of the Hydraulics Division, 102(HY5), 559–568. Yang, C. T., & Stall, J. B. (1976). Applicability of unit stream power equation. Journal of the Hydraulics Division, 102(HY5), 559–568.
6.
Zurück zum Zitat Yang, C. T. (1976). Minimum unit stream power and fluvial hydraulics. Journal of the Hydraulics Division, 102(HY7), 919–934. Yang, C. T. (1976). Minimum unit stream power and fluvial hydraulics. Journal of the Hydraulics Division, 102(HY7), 919–934.
7.
Zurück zum Zitat Yang, C. T., & Song, C. C. S. (1979). Theory of minimum rate of energy dissipation. Journal of the Hydraulics Division, 105(HY7), 769–784. Yang, C. T., & Song, C. C. S. (1979). Theory of minimum rate of energy dissipation. Journal of the Hydraulics Division, 105(HY7), 769–784.
8.
Zurück zum Zitat Song, C. C. S., & Yang, C. T. (1979). Velocity profiles and minimum stream power. Journal of the Hydraulics Division, 105(HY8), 981–998. Song, C. C. S., & Yang, C. T. (1979). Velocity profiles and minimum stream power. Journal of the Hydraulics Division, 105(HY8), 981–998.
9.
Zurück zum Zitat Yang, C. T., & Song, C. C. S. (1979). Dynamic adjustments of alluvial channels. In D. D. Rhodes & G. P. Williams (Eds.), Adjustments of the fluvial systems (pp. 55–67). Dubuque: Kendall/Hunt Publishing Company. Yang, C. T., & Song, C. C. S. (1979). Dynamic adjustments of alluvial channels. In D. D. Rhodes & G. P. Williams (Eds.), Adjustments of the fluvial systems (pp. 55–67). Dubuque: Kendall/Hunt Publishing Company.
10.
Zurück zum Zitat Song, C. C. S., & Yang, C. T. (1980). Minimum stream power: Theory. Journal of the Hydraulics Division, 106(HY9), 1477–1487. Song, C. C. S., & Yang, C. T. (1980). Minimum stream power: Theory. Journal of the Hydraulics Division, 106(HY9), 1477–1487.
11.
Zurück zum Zitat Yang, C. T., Song, C. C. S., & Woldenberg, M. J. (1981). Hydraulic geometry and minimum rate of energy dissipation. Water Resources Research, 17(4), 1014–1018.CrossRef Yang, C. T., Song, C. C. S., & Woldenberg, M. J. (1981). Hydraulic geometry and minimum rate of energy dissipation. Water Resources Research, 17(4), 1014–1018.CrossRef
12.
Zurück zum Zitat Song, C. C. S., & Yang, C. T. (1982). Minimum energy and energy dissipation rate. Journal of the Hydraulics Division, 108(HY5), 690–706. Song, C. C. S., & Yang, C. T. (1982). Minimum energy and energy dissipation rate. Journal of the Hydraulics Division, 108(HY5), 690–706.
13.
Zurück zum Zitat Yang, C. T., & Molinas, A. (1982). Sediment transport and unit stream power function. Journal of the Hydraulics Division, 108(HY6), 774–793. Yang, C. T., & Molinas, A. (1982). Sediment transport and unit stream power function. Journal of the Hydraulics Division, 108(HY6), 774–793.
14.
Zurück zum Zitat Yang, C. T. (1984). Unit stream power equation for gravel. Journal of Hydraulic Engineering, 110(HY12), 1783–1797.CrossRef Yang, C. T. (1984). Unit stream power equation for gravel. Journal of Hydraulic Engineering, 110(HY12), 1783–1797.CrossRef
15.
Zurück zum Zitat Molinas, A., & Yang, C. T. (1985). Generalized water surface profile computation. Journal of Hydraulic Engineering, 111(HY3), 381–397.CrossRef Molinas, A., & Yang, C. T. (1985). Generalized water surface profile computation. Journal of Hydraulic Engineering, 111(HY3), 381–397.CrossRef
16.
Zurück zum Zitat Yang, C. T., & Song, C. C. S. (1986). Theory of minimum energy and energy dissipation rate. In Encyclopedia of fluid mechanics (Vol. 1, Chapter ll, pp. 353–399) Houston: Gulf Publishing Company. Yang, C. T., & Song, C. C. S. (1986). Theory of minimum energy and energy dissipation rate. In Encyclopedia of fluid mechanics (Vol. 1, Chapter ll, pp. 353–399) Houston: Gulf Publishing Company.
17.
Zurück zum Zitat Yang, C. T., & Kong, X. (1991). Energy dissipation rate and sediment transport. Journal of Hydraulic Research, 29(4), 457–474.CrossRef Yang, C. T., & Kong, X. (1991). Energy dissipation rate and sediment transport. Journal of Hydraulic Research, 29(4), 457–474.CrossRef
18.
Zurück zum Zitat Yang, C. T. (1994). Variational theories in hydrodynamics and hydraulics. Journal of Hydraulic Engineering, 120(6), 737–756.CrossRef Yang, C. T. (1994). Variational theories in hydrodynamics and hydraulics. Journal of Hydraulic Engineering, 120(6), 737–756.CrossRef
19.
Zurück zum Zitat Chang, H. H., & Hill, J. C. (1977). Minimum stream power for rivers and deltas. Journal of the Hydraulics Division, 103(HY12), 1375–1389. Chang, H. H., & Hill, J. C. (1977). Minimum stream power for rivers and deltas. Journal of the Hydraulics Division, 103(HY12), 1375–1389.
20.
Zurück zum Zitat Chang, H. H. (1979a). Geometry of river in regime. Journal of the Hydraulics Division, 105(HY6), 691–706. Chang, H. H. (1979a). Geometry of river in regime. Journal of the Hydraulics Division, 105(HY6), 691–706.
21.
Zurück zum Zitat Chang, H. H. (1979b). Minimum stream power and river channel patterns. Journal of Hydrology, 41(3/4), 303–327.CrossRef Chang, H. H. (1979b). Minimum stream power and river channel patterns. Journal of Hydrology, 41(3/4), 303–327.CrossRef
22.
Zurück zum Zitat Chang, H. H. (1980). Stable alluvial canal design. Journal of the Hydraulics Division, 106(5), 873–891. Chang, H. H. (1980). Stable alluvial canal design. Journal of the Hydraulics Division, 106(5), 873–891.
23.
Zurück zum Zitat Chang, H. H. (1983). Energy expenditure in curved open channels. Journal of Hydraulic Engineering, 109(HY7), 1012–1022.CrossRef Chang, H. H. (1983). Energy expenditure in curved open channels. Journal of Hydraulic Engineering, 109(HY7), 1012–1022.CrossRef
24.
Zurück zum Zitat Chang, H. H. (1984). Analysis of river meanders. Journal of Hydraulic Engineering, 110(HY1), 37–50.CrossRef Chang, H. H. (1984). Analysis of river meanders. Journal of Hydraulic Engineering, 110(HY1), 37–50.CrossRef
25.
Zurück zum Zitat Prigogine, I. (1977). Self-organization in non-equilibrium systems. New York: Wiley-Interscience. Prigogine, I. (1977). Self-organization in non-equilibrium systems. New York: Wiley-Interscience.
26.
Zurück zum Zitat Wisniewski, S., Staniszewski, B., & Szymanik. R. (1988). Thermodynamics of nonequilibrium processes. [In Chinese.] (trans: J. Chen, K. Yin, H. Li). Beijing: Higher Education Press. Wisniewski, S., Staniszewski, B., & Szymanik. R. (1988). Thermodynamics of nonequilibrium processes. [In Chinese.] (trans: J. Chen, K. Yin, H. Li). Beijing: Higher Education Press.
27.
Zurück zum Zitat Li, R. (1986). Non-equilibrium thermodynamics and dissipative structures. [In Chinese.] Beijing: Tsinghua University Press. Li, R. (1986). Non-equilibrium thermodynamics and dissipative structures. [In Chinese.] Beijing: Tsinghua University Press.
28.
Zurück zum Zitat Gong, M. (1998). Thermodynamics. [In Chinese.] Wu Han: Wuhan University Press. Gong, M. (1998). Thermodynamics. [In Chinese.] Wu Han: Wuhan University Press.
29.
Zurück zum Zitat Xu, G., & Lian, J. (2003). Theories of the minimum rate of energy dissipation and the minimum entropy production of flow (I). [In Chinese.] Journal of Hydraulic Engineering, 5, pp. 35–40. Xu, G., & Lian, J. (2003). Theories of the minimum rate of energy dissipation and the minimum entropy production of flow (I). [In Chinese.] Journal of Hydraulic Engineering, 5, pp. 35–40.
30.
Zurück zum Zitat Xu, G., & Lian, J. (2003). Theories of the minimum rate of energy dissipation and the minimum entropy production of flow (II). [In Chinese.] Journal of Hydraulic Engineering, 6, pp. 43–47. Xu, G., & Lian, J. (2003). Theories of the minimum rate of energy dissipation and the minimum entropy production of flow (II). [In Chinese.] Journal of Hydraulic Engineering, 6, pp. 43–47.
31.
Zurück zum Zitat Wu, W. (2004). Fluid mechanics. [In Chinese.] Beijing: University Press. Wu, W. (2004). Fluid mechanics. [In Chinese.] Beijing: University Press.
32.
Zurück zum Zitat Chang, M., & Xu, G. (2013). Numerical simulation of fluid motion in flume based on theory of minimum rate of energy dissipation. [In Chinese.] Journal of Sediment Research, 2, pp. 67–71. Chang, M., & Xu, G. (2013). Numerical simulation of fluid motion in flume based on theory of minimum rate of energy dissipation. [In Chinese.] Journal of Sediment Research, 2, pp. 67–71.
33.
Zurück zum Zitat Qian, N., Zhang, R., & Zhou, Z. (1987). Fluvial process. [In Chinese.] Beijing: Science Press. Qian, N., Zhang, R., & Zhou, Z. (1987). Fluvial process. [In Chinese.] Beijing: Science Press.
34.
Zurück zum Zitat Xu, G., & Lian, J. (2008). Principle of the minimum rate of energy dissipation for fluid based on the theory of thermodynamics. [In Chinese.] Advances in Science and Technology of Water Resources, 28(5), pp. 16–20. Xu, G., & Lian, J. (2008). Principle of the minimum rate of energy dissipation for fluid based on the theory of thermodynamics. [In Chinese.] Advances in Science and Technology of Water Resources, 28(5), pp. 16–20.
35.
Zurück zum Zitat Xu, G., & Yang, C. T. (2012). Analysis of river bed changes based on the theories of minimum entropy production dissipative structure and chaos. [In Chinese.] Journal of Hydraulic Engineering, 43(8), pp. 948–956. Xu, G., & Yang, C. T. (2012). Analysis of river bed changes based on the theories of minimum entropy production dissipative structure and chaos. [In Chinese.] Journal of Hydraulic Engineering, 43(8), pp. 948–956.
36.
Zurück zum Zitat Leopold, L. B., & Langbein, W. B. (1962). The concept of entropy in landscape evolution. U.S. Geological Survey Professional Paper 500–A, pp. 1–20. Leopold, L. B., & Langbein, W. B. (1962). The concept of entropy in landscape evolution. U.S. Geological Survey Professional Paper 500–A, pp. 1–20.
37.
Zurück zum Zitat Xu, G., & Lian, J. (2004). Changes of the entropy, the entropy production and the rate of energy dissipation in river adjustment. [In Chinese.] Advances in Water Science, 15(1), pp. 1–5. Xu, G., & Lian, J. (2004). Changes of the entropy, the entropy production and the rate of energy dissipation in river adjustment. [In Chinese.] Advances in Water Science, 15(1), pp. 1–5.
38.
Zurück zum Zitat Xie, J. (1997). Fluvial process and regulation (2 nd version). [In Chinese.] Beijing: Water Resources and Electric Power Press. Xie, J. (1997). Fluvial process and regulation (2 nd version). [In Chinese.] Beijing: Water Resources and Electric Power Press.
39.
Zurück zum Zitat Xu, G. (2011). River engineering. [In Chinese.] Beijing: China Science and Technology Press. Xu, G. (2011). River engineering. [In Chinese.] Beijing: China Science and Technology Press.
40.
Zurück zum Zitat Huang, H., He, J., & Wang, X., etal. (2008). Research on influencing factors and criterion of channel patterns in alluvial rivers. [In Chinese.] Journal of Xinjiang Agricultural University, 31(6), pp. 76–79. Huang, H., He, J., & Wang, X., etal. (2008). Research on influencing factors and criterion of channel patterns in alluvial rivers. [In Chinese.] Journal of Xinjiang Agricultural University, 31(6), pp. 76–79.
41.
Zurück zum Zitat Xu, G., & Zhao, L. (2013). Analysis of fluvial process based on information entropy. [In Chinese.] Journal of Tianjin University, 46(4), pp. 347–353. Xu, G., & Zhao, L. (2013). Analysis of fluvial process based on information entropy. [In Chinese.] Journal of Tianjin University, 46(4), pp. 347–353.
42.
Zurück zum Zitat Xu, G., & Zhao, L. (2013). Analysis of channel pattern changes in the lower Yellow River based on the rate of energy dissipation. [In Chinese.] Journal of Hydraulic Engineering, 44(5), pp. 622–626. Xu, G., & Zhao, L. (2013). Analysis of channel pattern changes in the lower Yellow River based on the rate of energy dissipation. [In Chinese.] Journal of Hydraulic Engineering, 44(5), pp. 622–626.
43.
Zurück zum Zitat Hu, Y., Zhang, H., & Liu, G., et al. (1998). River training in the wandering reach in the lower Yellow River. [In Chinese.] Zhengzhou: Yellow River Conservancy Press. Hu, Y., Zhang, H., & Liu, G., et al. (1998). River training in the wandering reach in the lower Yellow River. [In Chinese.] Zhengzhou: Yellow River Conservancy Press.
44.
Zurück zum Zitat Zhang, R. (1998). River sediment dynamics (2 nd Version). [In Chinese.] Beijing: China WaterPower Press. Zhang, R. (1998). River sediment dynamics (2 nd Version). [In Chinese.] Beijing: China WaterPower Press.
45.
Zurück zum Zitat Xu, G. (1993). Calculation of the outlet sluice width in low dam diversion works. [In Chinese.] Journal of Sediment Research, 4, pp. 65–71. Xu, G. (1993). Calculation of the outlet sluice width in low dam diversion works. [In Chinese.] Journal of Sediment Research, 4, pp. 65–71.
46.
Zurück zum Zitat Xu, G. (1992). Optimized design of bend in bend-type water diversion headworks. [In Chinese.] Journal of Sediment Research, 3, pp. 65–69. Xu, G. (1992). Optimized design of bend in bend-type water diversion headworks. [In Chinese.] Journal of Sediment Research, 3, pp. 65–69.
47.
Zurück zum Zitat Song, Z., Xu, X., & Zhang, S. (1989). Headworks (2 nd Version). [In Chinese.] Beijing: Water Resources and Electric Power Press. Song, Z., Xu, X., & Zhang, S. (1989). Headworks (2 nd Version). [In Chinese.] Beijing: Water Resources and Electric Power Press.
48.
Zurück zum Zitat Yan, X., Liu, X., & Li, G. (1990). Sediment control of low-head diversion work. [In Chinese.] Beijing: Water Resources and Electric Power Press. Yan, X., Liu, X., & Li, G. (1990). Sediment control of low-head diversion work. [In Chinese.] Beijing: Water Resources and Electric Power Press.
49.
Zurück zum Zitat Zhang, K. (1982). The judgment for circulation strength and using spiral stream for sediment ejection. [In Chinese.] Journal of Xinjiang Water Conservancy Science and Technology, 4, pp. 35–43. Zhang, K. (1982). The judgment for circulation strength and using spiral stream for sediment ejection. [In Chinese.] Journal of Xinjiang Water Conservancy Science and Technology, 4, pp. 35–43.
50.
Zurück zum Zitat Xie, Z. (1982). Bend-type diversion headworks experience in Xin Jiang. [In Chinese.] Journal of Sediment Research, 3, pp. 84–88. Xie, Z. (1982). Bend-type diversion headworks experience in Xin Jiang. [In Chinese.] Journal of Sediment Research, 3, pp. 84–88.
51.
Zurück zum Zitat Quarteroni, A., Sacco, R., & Saleri, F. (2006) Numerical mathematics. Foreign famous math book series (Photocopy Edition) 5. Beijing: Science Press. Quarteroni, A., Sacco, R., & Saleri, F. (2006) Numerical mathematics. Foreign famous math book series (Photocopy Edition) 5. Beijing: Science Press.
52.
Zurück zum Zitat Xi, S., & Zhao, F. (1983). Optimization methods. [In Chinese.] Shanghai: Shanghai Science and Technology Press. Xi, S., & Zhao, F. (1983). Optimization methods. [In Chinese.] Shanghai: Shanghai Science and Technology Press.
53.
Zurück zum Zitat Xu, G. (1993). An optimum design method of the regime channel. [In Chinese.] Journal of Hydrodynamics, 8(B12), pp. 567–570. Xu, G. (1993). An optimum design method of the regime channel. [In Chinese.] Journal of Hydrodynamics, 8(B12), pp. 567–570.
54.
Zurück zum Zitat Xu, G. (1996). An optimum design method for stable canals. [In Chinese.] Journal of Hydraulic Engineering, 7, pp. 61–66. Xu, G. (1996). An optimum design method for stable canals. [In Chinese.] Journal of Hydraulic Engineering, 7, pp. 61–66.
55.
Zurück zum Zitat Sha, Y. (1959). A method of sedimentation balance and stable channel design. [In Chinese.] Journal of Hydraulic Engineering, 4, pp. 23–42. Sha, Y. (1959). A method of sedimentation balance and stable channel design. [In Chinese.] Journal of Hydraulic Engineering, 4, pp. 23–42.
56.
Zurück zum Zitat Northwest Institute of Hydraulic Research. (1959). The canal sediment and channel design. [In Chinese.] Shaanxi People’s Publishing House, Xi’an, China. Northwest Institute of Hydraulic Research. (1959). The canal sediment and channel design. [In Chinese.] Shaanxi People’s Publishing House, Xi’an, China.
57.
Zurück zum Zitat Hyper-concentrated sediment muddy water irrigation experience summary of Yin Luo channel. (1987). Selected from Book One of the First Series of Yellow River Sediment Research Report, Yellow River Sediment Research Work Coordination Group, Zhengzhou, China, pp. 139–157 [In Chinese.]. Hyper-concentrated sediment muddy water irrigation experience summary of Yin Luo channel. (1987). Selected from Book One of the First Series of Yellow River Sediment Research Report, Yellow River Sediment Research Work Coordination Group, Zhengzhou, China, pp. 139–157 [In Chinese.].
58.
Zurück zum Zitat Hyper-concentrated sediment diversion experimental group in Shaanxi Province. (1976). Hyper-concentrated sediment diversion preliminary summary in Jing River, Luo River and Baojixia Irrigation Districts of Wei River, Selected from the Third Series of Yellow River Sediment Research Report, Yellow River Sediment Research Work Coordination Group, Xi’an, China, pp. 107–137 [In Chinese.]. Hyper-concentrated sediment diversion experimental group in Shaanxi Province. (1976). Hyper-concentrated sediment diversion preliminary summary in Jing River, Luo River and Baojixia Irrigation Districts of Wei River, Selected from the Third Series of Yellow River Sediment Research Report, Yellow River Sediment Research Work Coordination Group, Xi’an, China, pp. 107–137 [In Chinese.].
59.
Zurück zum Zitat Sha, Y. (1965). Introduction of sediment kinematics. [In Chinese.] Beijing: China Industry Press. Sha, Y. (1965). Introduction of sediment kinematics. [In Chinese.] Beijing: China Industry Press.
60.
Zurück zum Zitat Qian, N., & Wan, Z. (1983). Mechanics of sediment transport. [In Chinese.] Beijing: Science Press. Qian, N., & Wan, Z. (1983). Mechanics of sediment transport. [In Chinese.] Beijing: Science Press.
Metadaten
Titel
Minimum Energy Dissipation Rate Theory and Its Applications for Water Resources Engineering
verfasst von
Guobin Xu, PhD
Chih Ted Yang, PhD, PE, D.WRE
Lina Zhao
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-11023-3_5