Skip to main content

2015 | OriginalPaper | Buchkapitel

6. Hydraulic Modeling Development and Application in Water Resources Engineering

verfasst von : Francisco J.M. Simões, PhD

Erschienen in: Advances in Water Resources Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of modeling has become widespread in water resources engineering and science to study rivers, lakes, estuaries, and coastal regions. For example, computer models are commonly used to forecast anthropogenic effects on the environment, and to help provide advanced mitigation measures against catastrophic events such as natural and dam-break floods. Linking hydraulic models to vegetation and habitat models has expanded their use in multidisciplinary applications to the riparian corridor. Implementation of these models in software packages on personal desktop computers has made them accessible to the general engineering community, and their use has been popularized by the need of minimal training due to intuitive graphical user interface front ends. Models are, however, complex and nontrivial, to the extent that even common terminology is sometimes ambiguous and often applied incorrectly. In fact, many efforts are currently under way in order to standardize terminology and offer guidelines for good practice, but none has yet reached unanimous acceptance. This chapter provides a view of the elements involved in modeling surface flows for the application in environmental water resources engineering. It presents the concepts and steps necessary for rational model development and use by starting with the exploration of the ideas involved in defining a model. Tangible form of those ideas is provided by the development of a mathematical and corresponding numerical hydraulic model, which is given with a substantial amount of detail. The issues of model deployment in a practical and productive work environment are also addressed. The chapter ends by presenting a few model applications highlighting the need for good quality control in model validation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Glossar
CFD
Short for computational fluid dynamics, it is a discipline that uses numerical methods and algorithms to solve fluid mechanics problems with computers.
CGNS
A standard for the storage and retrieval of digital data produced in CFD applications. It stands for CFD general notation system.
Computational cell
Each individual point, or volume, of the lattice (computational grid) transforming the continuous real-world domains into its discrete counterpart, suitable for numerical evaluation and implementation on digital computers.
Digital terrain model
Also called a digital elevation model (DEM), it is a 3D digital representation of a terrain’s surface.
Eddy viscosity
A method to model the transfer of momentum caused by turbulent eddies that is mathematically similar to momentum transfer due to molecular diffusion, and that consists in replacing the fluid viscosity ν by an effective turbulent viscosity, ν t , also called the eddy viscosity.
Froude number (Fr)
A dimensionless quantity defined as the ratio of a characteristic velocity to a gravitational wave velocity.
Godunov scheme
A conservative finite-volume numerical scheme used in the solution of partial differential equations, which solves exact or approximate Riemann problems at inter-cell boundaries.
Graphical user interface
Type of computer-user interface that allows the user to interact with a computer program using pointing hardware devices, graphical icons, and other visual indicators.
Hydrology
The study of flow of water over the Earth’s surface
k–ε model
A turbulence model based on solving two differential transport equations, one for the turbulent kinetic energy k and the other for the rate of turbulent dissipation ε.
Model
A idealized representation of a system.
MUSCL
Short for modified upwind scheme for conservation laws, it is a method to describe (reconstruct) the states of the variables in a computational cell based on the cell-averaged states (and their gradients) obtained in the previous time step.
Navier–Stokes equations
Partial differential equations arising from Newton’s second law (conservation of momentum) that describe the motion of fluids.
Runge–Kutta methods
A family of implicit and explicit iterative methods used in temporal discretization for the approximation of solutions of ordinary differential equations.
Supercritical flow
A flow whose velocity is larger than the wave velocity, therefore with Fr > 1.
TVD
Total variation diminishing (TVD) is a property of certain discretization schemes used to solve hyperbolic partial differential equations that do not increase the total variation of the solution from one time step to the next.
Fußnoten
1
The independent variables are the inputs and the forcing quantities, such as boundary conditions and spatial coordinates; the dependent variables are the outputs and effects, such as flow velocity and water surface elevation.
 
Literatur
1.
Zurück zum Zitat 1. Kirby, M. J. (1987). Models in physical geography. In M. Clark et al. (Eds.), Horizons in physical geography. (pp. 47–61). Totowa: Barnes and Noble. 1. Kirby, M. J. (1987). Models in physical geography. In M. Clark et al. (Eds.), Horizons in physical geography. (pp. 47–61). Totowa: Barnes and Noble.
2.
Zurück zum Zitat Bird, R., Stewart, W., & Lightfoot, E. (1960). Transport phenomena. New York: Wiley. Bird, R., Stewart, W., & Lightfoot, E. (1960). Transport phenomena. New York: Wiley.
3.
Zurück zum Zitat Formentin, S., & Zanuttigh, B. (2013). Prediction of wave transmission through a new artificial neural network developed for wave reflection. Proceedings of the 7th International Conference on Coastal Dynamics, Arcachon, France, 24–28 June 2013, pp. 627–638. Formentin, S., & Zanuttigh, B. (2013). Prediction of wave transmission through a new artificial neural network developed for wave reflection. Proceedings of the 7th International Conference on Coastal Dynamics, Arcachon, France, 24–28 June 2013, pp. 627–638.
4.
Zurück zum Zitat Azamathulla, H., & Zahiri, A. (2012). Flow discharge prediction in compound channels using linear genetic programming. Journal of Hydrology, 454–455, 203–207.CrossRef Azamathulla, H., & Zahiri, A. (2012). Flow discharge prediction in compound channels using linear genetic programming. Journal of Hydrology, 454–455, 203–207.CrossRef
5.
Zurück zum Zitat Biswas, G. (2013). Computational fluid dynamics. Pangbourne: Alpha Science. Biswas, G. (2013). Computational fluid dynamics. Pangbourne: Alpha Science.
6.
Zurück zum Zitat Rosenquist, T., & Story, S. (2012). Using the Intel Math Kernel Library (Intel MKL) and Intel compilers to obtain run-to-run numerical reproducible results. The Parallel Universe, no. 11, September 2012, pp. 26–28 Intel Corporation. Rosenquist, T., & Story, S. (2012). Using the Intel Math Kernel Library (Intel MKL) and Intel compilers to obtain run-to-run numerical reproducible results. The Parallel Universe, no. 11, September 2012, pp. 26–28 Intel Corporation.
7.
Zurück zum Zitat Refsgaard, J., & Henriksen, H. (2004). Modeling guidelines—terminology and guiding principles. Advances in Water Resources, 27, 71–82.CrossRef Refsgaard, J., & Henriksen, H. (2004). Modeling guidelines—terminology and guiding principles. Advances in Water Resources, 27, 71–82.CrossRef
8.
Zurück zum Zitat EPA. (2009). Guidance on the development, evaluation, and application of environmental models. U.S. Environmental Protection Agency, Council for Regulatory Environmental Modeling, EPA/100/K-09/003, March 2009. EPA. (2009). Guidance on the development, evaluation, and application of environmental models. U.S. Environmental Protection Agency, Council for Regulatory Environmental Modeling, EPA/100/K-09/003, March 2009.
9.
Zurück zum Zitat Tennekes, H., & Lumley, J. (1972). A first course in turbulence. Cambridge: MIT Press. Tennekes, H., & Lumley, J. (1972). A first course in turbulence. Cambridge: MIT Press.
10.
Zurück zum Zitat Rodi, W. (1993). Turbulence models and their application in hydraulics. IAHR monograph. Roterdam: Balkema. Rodi, W. (1993). Turbulence models and their application in hydraulics. IAHR monograph. Roterdam: Balkema.
11.
Zurück zum Zitat Pritchard, D. W. (1971). Hydrodynamic models. Estuarine models: An assessment (pp. 33). Tracor, Inc, for the Water Quality Office of the Environmental Protection Agency. Pritchard, D. W. (1971). Hydrodynamic models. Estuarine models: An assessment (pp. 33). Tracor, Inc, for the Water Quality Office of the Environmental Protection Agency.
12.
Zurück zum Zitat Shimizu, Y., Yamaguchi, H., & Itakura, T. (1991). Three-dimensional computation of flow and bed deformation. Journal of Hydraulic Engineering, 116(9), 1090–1108.CrossRef Shimizu, Y., Yamaguchi, H., & Itakura, T. (1991). Three-dimensional computation of flow and bed deformation. Journal of Hydraulic Engineering, 116(9), 1090–1108.CrossRef
13.
Zurück zum Zitat Vreugdenhil, C. (1994). Numerical methods for shallow-water flow. Boston: Kluwer. Vreugdenhil, C. (1994). Numerical methods for shallow-water flow. Boston: Kluwer.
14.
Zurück zum Zitat Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J., & Brooks, N. H. (1979). Mixing in inland and coastal waters. San Diego: Academic. Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J., & Brooks, N. H. (1979). Mixing in inland and coastal waters. San Diego: Academic.
15.
Zurück zum Zitat Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43, 357–372.CrossRef Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43, 357–372.CrossRef
16.
Zurück zum Zitat Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows. Chichester: Wiley. Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows. Chichester: Wiley.
17.
Zurück zum Zitat Alcrudo, F., & Garcia-Navarro, P. (1993). A high-resolution Godunov-type scheme in finite volumes in 2D shallow water equations. International Journal for Numerical Methods in Fluids, 16, 489–505.CrossRef Alcrudo, F., & Garcia-Navarro, P. (1993). A high-resolution Godunov-type scheme in finite volumes in 2D shallow water equations. International Journal for Numerical Methods in Fluids, 16, 489–505.CrossRef
18.
Zurück zum Zitat Harten, A., & Hyman, J. M. (1983). Self adjusting grid methods for one-dimensional hyperbolic conservation laws. Journal of Computational Physics, 50, 235–269.CrossRef Harten, A., & Hyman, J. M. (1983). Self adjusting grid methods for one-dimensional hyperbolic conservation laws. Journal of Computational Physics, 50, 235–269.CrossRef
19.
Zurück zum Zitat van Leer, B. (1979). Towards the ultimate conservative difference scheme, V. A second order sequel to Godunovʼs method. Journal of Computational Physics, 32, 101–136.CrossRef van Leer, B. (1979). Towards the ultimate conservative difference scheme, V. A second order sequel to Godunovʼs method. Journal of Computational Physics, 32, 101–136.CrossRef
20.
Zurück zum Zitat Barth, T. J., & Jespersen, D. C. (1989). The design and application of upwind schemes on unstructured meshes. AIAA paper AIAA-89-0366. Barth, T. J., & Jespersen, D. C. (1989). The design and application of upwind schemes on unstructured meshes. AIAA paper AIAA-89-0366.
21.
Zurück zum Zitat Venkatakrishnan, V. (1995). Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. Journal of Computational Physics, 118, 120–130.CrossRef Venkatakrishnan, V. (1995). Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. Journal of Computational Physics, 118, 120–130.CrossRef
22.
Zurück zum Zitat Rausch, R., Batina, J., & Yang, H. (1991). Spatial adaptation procedures on unstructured meshes for accurate unsteady aerodynamic flow computation. AIAA Paper 91-1106. Rausch, R., Batina, J., & Yang, H. (1991). Spatial adaptation procedures on unstructured meshes for accurate unsteady aerodynamic flow computation. AIAA Paper 91-1106.
23.
Zurück zum Zitat Batten, P., Lambert, C., & Causon, D. M. (1996). Positively conservative high-resolution convective schemes for unstructured elements. International Journal for Numerical Methods in Engineering, 39, 1821–1838.CrossRef Batten, P., Lambert, C., & Causon, D. M. (1996). Positively conservative high-resolution convective schemes for unstructured elements. International Journal for Numerical Methods in Engineering, 39, 1821–1838.CrossRef
24.
Zurück zum Zitat Coirier, W. J. (1994). An adaptively-refined, Cartesian, cell-based scheme for the Euler and Navier-Stokes equations, Ph.D. dissertation, Dept. of Aerospace Engineering, Univeristy of Michigan, MI. Coirier, W. J. (1994). An adaptively-refined, Cartesian, cell-based scheme for the Euler and Navier-Stokes equations, Ph.D. dissertation, Dept. of Aerospace Engineering, Univeristy of Michigan, MI.
25.
Zurück zum Zitat Bradford, S. F., & Sanders, B. F. (2002). Finite-volume method for shallow water flooding of arbitrary topography. Journal of Hydraulic Engineering. ASCE, 128(3), 289–298.CrossRef Bradford, S. F., & Sanders, B. F. (2002). Finite-volume method for shallow water flooding of arbitrary topography. Journal of Hydraulic Engineering. ASCE, 128(3), 289–298.CrossRef
26.
Zurück zum Zitat Gottlieb, S., Shu, C.-W., & Tadmor, E. (2001). Strong stability-preserving high-order time discretization methods. SIAM Review, 43(1), 89–112.CrossRef Gottlieb, S., Shu, C.-W., & Tadmor, E. (2001). Strong stability-preserving high-order time discretization methods. SIAM Review, 43(1), 89–112.CrossRef
27.
Zurück zum Zitat Swanson, R. C., & Turkel, E. (1997). Multistage schemes with multigrid for Euler and Navier-Stokes equations, components and analysis. NASA technical paper 3631, Langley Research Center, Hampton, VA. Swanson, R. C., & Turkel, E. (1997). Multistage schemes with multigrid for Euler and Navier-Stokes equations, components and analysis. NASA technical paper 3631, Langley Research Center, Hampton, VA.
28.
Zurück zum Zitat Jameson, A., & Mavriplis, D. (1986). Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh. AIAA Journal, 24(4), 611–618.CrossRef Jameson, A., & Mavriplis, D. (1986). Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh. AIAA Journal, 24(4), 611–618.CrossRef
29.
Zurück zum Zitat Horritt, M. S. (2002). Evaluating wetting and drying algorithms for finite element models of shallow water flow. International Journal for Numerical Methods in Engineering, 55, 835–851.CrossRef Horritt, M. S. (2002). Evaluating wetting and drying algorithms for finite element models of shallow water flow. International Journal for Numerical Methods in Engineering, 55, 835–851.CrossRef
30.
Zurück zum Zitat Balzano, A. (1998). Evaluation of methods for numerical simulation of wetting and drying of shallow water flow models. Coastal Engineering, 34, 83–107.CrossRef Balzano, A. (1998). Evaluation of methods for numerical simulation of wetting and drying of shallow water flow models. Coastal Engineering, 34, 83–107.CrossRef
31.
Zurück zum Zitat Anastasiou, K., & Chan, C. T. (1997). Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. International Journal for Numerical Methods in Fluids, 24, 1225–1245.CrossRef Anastasiou, K., & Chan, C. T. (1997). Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. International Journal for Numerical Methods in Fluids, 24, 1225–1245.CrossRef
32.
Zurück zum Zitat Löhner, R., & Galle, M. (2002). Minimization of indirect addressing for edge-based field solvers. Communications in Numerical Methods in Engineering, 18, 335–343.CrossRef Löhner, R., & Galle, M. (2002). Minimization of indirect addressing for edge-based field solvers. Communications in Numerical Methods in Engineering, 18, 335–343.CrossRef
33.
Zurück zum Zitat George, A., & Liu, J. (1981). Computer solution of large sparse positive definite systems. Computational mathematics. Englewood Cliffs: Prentice-Hall. George, A., & Liu, J. (1981). Computer solution of large sparse positive definite systems. Computational mathematics. Englewood Cliffs: Prentice-Hall.
34.
Zurück zum Zitat Dokken, T., Hagen, T. R., & Hjelmervik, J. M. (2007). An introduction to general purpose computing on programmable graphics hardware. In G. Hasle, et al. (Eds.), Geometric modeling, numerical simulation, and optimization: Industrial mathematics at SINTEF (pp. 123–161). Springer. Dokken, T., Hagen, T. R., & Hjelmervik, J. M. (2007). An introduction to general purpose computing on programmable graphics hardware. In G. Hasle, et al. (Eds.), Geometric modeling, numerical simulation, and optimization: Industrial mathematics at SINTEF (pp. 123–161). Springer.
35.
Zurück zum Zitat Tarpanelli, A., Brocca, L., Melone, F., & Moramarco, T. (2013). Hydraulic modelling calibration in small rivers by using coarse resolution synthetic aperture radar imagery. Hydrological Processes, 27, 1321–1330.CrossRef Tarpanelli, A., Brocca, L., Melone, F., & Moramarco, T. (2013). Hydraulic modelling calibration in small rivers by using coarse resolution synthetic aperture radar imagery. Hydrological Processes, 27, 1321–1330.CrossRef
36.
Zurück zum Zitat Gallegos, H. A., Schubert, J. E., & Sanders, B. F. (2009). Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California. Advances in Water Resources, 32, 1323–1335.CrossRef Gallegos, H. A., Schubert, J. E., & Sanders, B. F. (2009). Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California. Advances in Water Resources, 32, 1323–1335.CrossRef
37.
Zurück zum Zitat Hunter, N. M., Bates, P. D., Neelz, S., Pender, G., Villanueva, I., Wright, N. G., Liang, D., Falconer, R. A., Lin, B., Waller, S., Crossley, A. J., & Mason, D. C. (2008). Benchmarking 2D hydraulic models for urban flooding. Water Management, 161, 13–30. Hunter, N. M., Bates, P. D., Neelz, S., Pender, G., Villanueva, I., Wright, N. G., Liang, D., Falconer, R. A., Lin, B., Waller, S., Crossley, A. J., & Mason, D. C. (2008). Benchmarking 2D hydraulic models for urban flooding. Water Management, 161, 13–30.
38.
Zurück zum Zitat Williams, R. D., Brasington, J., Vericat, D., & Hicks, D. M. (2014). Hyperscale terrain modelling of braided rivers: Fusing mobile terrestrial laser scanning and optical bathymetric mapping. Earth Surface Processes and Landforms, 39, 167–183.CrossRef Williams, R. D., Brasington, J., Vericat, D., & Hicks, D. M. (2014). Hyperscale terrain modelling of braided rivers: Fusing mobile terrestrial laser scanning and optical bathymetric mapping. Earth Surface Processes and Landforms, 39, 167–183.CrossRef
39.
Zurück zum Zitat Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation and confirmation of numerical models in the earth sciences. Science, 263(5147), 641–646.CrossRef Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation and confirmation of numerical models in the earth sciences. Science, 263(5147), 641–646.CrossRef
40.
Zurück zum Zitat Cueto-Felgueroso, L., Colominas, I., Fe, J., Navarrina, F., & Casteleiro, M. (2006). High order finite volume schemes on unstructured grids using moving least squares reconstruction. Application to shallow water dynamics. International Journal for Numerical Methods in Engineering, 65(3), 295–331.CrossRef Cueto-Felgueroso, L., Colominas, I., Fe, J., Navarrina, F., & Casteleiro, M. (2006). High order finite volume schemes on unstructured grids using moving least squares reconstruction. Application to shallow water dynamics. International Journal for Numerical Methods in Engineering, 65(3), 295–331.CrossRef
41.
Zurück zum Zitat Rajaratnman, N., & Nwachukwu, B. A. (1983). Flow near groin-like structures. Journal of Hydraulic Engineering. ASCE, 109(3), 463–480.CrossRef Rajaratnman, N., & Nwachukwu, B. A. (1983). Flow near groin-like structures. Journal of Hydraulic Engineering. ASCE, 109(3), 463–480.CrossRef
42.
Zurück zum Zitat Tingsanchali, T., & Maheswaran, S. (1990). 2-D depth-averaged flow near groyne. Journal of Hydraulic Engineering. ASCE, 166(1), 71–86.CrossRef Tingsanchali, T., & Maheswaran, S. (1990). 2-D depth-averaged flow near groyne. Journal of Hydraulic Engineering. ASCE, 166(1), 71–86.CrossRef
43.
Zurück zum Zitat Wagner, C. R., & Muller, D. S. (2002). Use of velocity data to calibrate and validate two-dimensional hydrodynamic models. Proceedings of the Second Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, July 29–August 1, 2002. Wagner, C. R., & Muller, D. S. (2002). Use of velocity data to calibrate and validate two-dimensional hydrodynamic models. Proceedings of the Second Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, July 29–August 1, 2002.
44.
Zurück zum Zitat ASCE (1998). River width adjustment. II: Modeling. Journal of Hydraulic Engineering. ASCE, 124(9), 903–917.CrossRef ASCE (1998). River width adjustment. II: Modeling. Journal of Hydraulic Engineering. ASCE, 124(9), 903–917.CrossRef
Metadaten
Titel
Hydraulic Modeling Development and Application in Water Resources Engineering
verfasst von
Francisco J.M. Simões, PhD
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-11023-3_6