Skip to main content
Erschienen in: Thermal Engineering 2/2024

01.02.2024 | RENEWABLE ENERGY SOURCES AND HYDROPOWER

Substantiation by Calculation of a System for Hydrogen Production from Biomass Using Chemical Looping Gasification

verfasst von: D. S. Litun, G. A. Ryabov

Erschienen in: Thermal Engineering | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern requirements for the production of hydrogen with a minimum carbon footprint, the possibility of using polygenerating systems for production of electricity, heat, or useful products, and chemical-looping technologies for producing hydrogen combined with capture of carbon dioxide are considered. A new system has been developed that integrates the use of biomass as a fuel, chemical looping, and syngas production in a polygenerating system of interconnected reactors, which is very promising in maximizing the effectiveness of hydrogen production without a carbon footprint (or with a negative carbon footprint). A procedure and results of calculations of the composition and consumption of generator gas, material balance of a chemical looping system, heat values of chemical reactions in a system of interconnected reactors, heat balance and temperatures in individual reactors, and heat and material balances in exhaust gas heat recovery units are presented. The effect of the main operating conditions of a chemical looping system on temperatures in the reactors was determined on the basis of the calculated and material balances. The calculated efficiency in terms of hydrogen production (75.93%) is given. This value fits well into the broad outline of the results obtained in simulation of similar systems for chemical looping hydrogen production from metal oxides and can be considered as a guideline when developing engineering solutions within the scope of the proposed process flow diagram. Potential directions of further studies are set.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Energy Technology Perspectives 2020: Special Report on Carbon Capture Utilisation and Storage: CCUS in Clean Energy Transitions (International Energy Agency, Paris, 2020). https://webstore.iea.org/ccus-in-clean-energy-transitions Energy Technology Perspectives 2020: Special Report on Carbon Capture Utilisation and Storage: CCUS in Clean Energy Transitions (International Energy Agency, Paris, 2020). https://​webstore.​iea.​org/​ccus-in-clean-energy-transitions
2.
Zurück zum Zitat A. Minchener, Development and Deployment of Future Fuels from Coal: Report of IEA Clean Coal Centre (IEA Clean Coal Centre, 2019). https://www.iea-coal.org A. Minchener, Development and Deployment of Future Fuels from Coal: Report of IEA Clean Coal Centre (IEA Clean Coal Centre, 2019). https://​www.​iea-coal.​org
3.
Zurück zum Zitat ETP Clean Energy Technology Guide, 2020 (International Energy Agency, Paris, 2020). https://www.iea.org/ articles/etp-cleanenergy-technology-guide ETP Clean Energy Technology Guide, 2020 (International Energy Agency, Paris, 2020). https://​www.​iea.​org/​ articles/etp-cleanenergy-technology-guide
4.
Zurück zum Zitat Negative Emission Technologies: What Role in Meeting Paris Agreement Targets?, EASAC Policy Report (European Academies’ Science Advisory Council, 2019). https://easac.eu/fileadmin/PDF_s/reports_statements/ Negative_Carbon/EASAC_Report_on_Negative_Emission_Technologies.pdf Negative Emission Technologies: What Role in Meeting Paris Agreement Targets?, EASAC Policy Report (European Academies’ Science Advisory Council, 2019). https://​easac.​eu/​fileadmin/​PDF_​s/​reports_​statements/​ Negative_Carbon/EASAC_Report_on_Negative_Emission_Technologies.pdf
5.
Zurück zum Zitat Using a Life Cycle Assessment Approach to Estimate the Net Greenhouse Gas Emissions of Bioenergy (IEA Bioenergy, 2013). https://www.ieabioenergy.com/wp-content/ uploads/2013/10/Using-a-LCA-approach-to-estimate-the-net-GHG-emissions-of-bioenergy.pdf. Accessed May 23, 2019. Using a Life Cycle Assessment Approach to Estimate the Net Greenhouse Gas Emissions of Bioenergy (IEA Bioenergy, 2013). https://​www.​ieabioenergy.​com/​wp-content/​ uploads/2013/10/Using-a-LCA-approach-to-estimate-the-net-GHG-emissions-of-bioenergy.pdf. Accessed May 23, 2019.
6.
Zurück zum Zitat The Crucial Role of Low-Carbon Hydrogen Production to Achieve Europe’s Climate Ambition: A Technical Assessment. https://zeroemissionsplatform.eu/wp-content/uploads/The-crucial-role-of-low-carbon-hydrogen-production-to-achieve-Europes-climate-ambition-ZEP-report-January-2021.pdf The Crucial Role of Low-Carbon Hydrogen Production to Achieve Europe’s Climate Ambition: A Technical Assessment. https://​zeroemissionspla​tform.​eu/​wp-content/​uploads/​The-crucial-role-of-low-carbon-hydrogen-production-to-achieve-Europes-climate-ambition-ZEP-report-January-2021.​pdf
7.
Zurück zum Zitat On Approval of the Concept of Development of Hydrogen Energy in the Russian Federation, RF Government Decree No 2162-r of August 5, 2021. On Approval of the Concept of Development of Hydrogen Energy in the Russian Federation, RF Government Decree No 2162-r of August 5, 2021.
10.
Zurück zum Zitat L. S. Fan, F. Li, L. G. Valazquer-Vargas, and S. Ramkumar, “Chemical looping gasification,” in Proc. 9th Int. Conf. on Circulating Fluidized Beds, Hamburg, Germany, May 13–16, 2008 (TuTech Innovation GmbH, Hamburg, 2008), pp. 801–806. L. S. Fan, F. Li, L. G. Valazquer-Vargas, and S. Ramkumar, “Chemical looping gasification,” in Proc. 9th Int. Conf. on Circulating Fluidized Beds, Hamburg, Germany, May 13–16, 2008 (TuTech Innovation GmbH, Hamburg, 2008), pp. 801–806.
11.
Zurück zum Zitat “Is polygeneration the future for clean coal?,” Power Mag., Mar. 1 (2014). https://www.powermag.com/is-polygeneration-the-future-for-clean-coal/ “Is polygeneration the future for clean coal?,” Power Mag., Mar. 1 (2014). https://​www.​powermag.​com/​is-polygeneration-the-future-for-clean-coal/​
12.
Zurück zum Zitat G. A. Ryabov and K. V. Khaneev, “Application of polygeneration systems for increasing efficiency of solid fuels,” Energetik, No. 11, 35–38 (2010). G. A. Ryabov and K. V. Khaneev, “Application of polygeneration systems for increasing efficiency of solid fuels,” Energetik, No. 11, 35–38 (2010).
13.
Zurück zum Zitat S. Pissot, T. B. Vilches, J. Maric, and M. Seemann, “Chemical looping gasification in a 2–4 MWt dual fluidized bed gasifier,” in Proc. 23th Int. Conf. on Fluidized Bed Conversion (FBC-23), Seoul, Republic of Korea, May 13–17, 2018, pp. 956–966. S. Pissot, T. B. Vilches, J. Maric, and M. Seemann, “Chemical looping gasification in a 2–4 MWt dual fluidized bed gasifier,” in Proc. 23th Int. Conf. on Fluidized Bed Conversion (FBC-23), Seoul, Republic of Korea, May 13–17, 2018, pp. 956–966.
15.
Zurück zum Zitat D. Yamaguchi, L. Tang, N. Burke, K. Chiang, L. Rye, T. Hadley, and S. Lim, “Small scale hydrogen production from metal–metal oxide Redox cycles,” in Hydrogen Energy, Ed. by D. Minić (IntechOpen, 2012), Chap. 2. https://doi.org/10.5772/50030CrossRef D. Yamaguchi, L. Tang, N. Burke, K. Chiang, L. Rye, T. Hadley, and S. Lim, “Small scale hydrogen production from metal–metal oxide Redox cycles,” in Hydrogen Energy, Ed. by D. Minić (IntechOpen, 2012), Chap. 2. https://​doi.​org/​10.​5772/​50030CrossRef
18.
Zurück zum Zitat S. Kern, C. Pfeifer, and H. Hofbauer, “Co-gasification of wood and hard coal in a dual fluidized bed steam gasifier: Process efficiency vs. gasification temperature,” in Proc. 21th Int. Conf. on Fluidized Bed Conversion (FBC-21), Naples, Italy, June 3–6, 2012. S. Kern, C. Pfeifer, and H. Hofbauer, “Co-gasification of wood and hard coal in a dual fluidized bed steam gasifier: Process efficiency vs. gasification temperature,” in Proc. 21th Int. Conf. on Fluidized Bed Conversion (FBC-21), Naples, Italy, June 3–6, 2012.
19.
Zurück zum Zitat Thermal Calculation of Boilers (Normative Method), 3rd ed. (Tsentr. Kotlo-Turbinnyi Inst., St. Petersburg, 1998) [in Russian]. Thermal Calculation of Boilers (Normative Method), 3rd ed. (Tsentr. Kotlo-Turbinnyi Inst., St. Petersburg, 1998) [in Russian].
Metadaten
Titel
Substantiation by Calculation of a System for Hydrogen Production from Biomass Using Chemical Looping Gasification
verfasst von
D. S. Litun
G. A. Ryabov
Publikationsdatum
01.02.2024
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 2/2024
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601524020058

Weitere Artikel der Ausgabe 2/2024

Thermal Engineering 2/2024 Zur Ausgabe

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Calculation of an Upgraded Rankine Cycle with Lithium Bromide Solution As a Working Flow

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Improving the PGU-450T Unit’s Maneuverability while Retaining Its Reliability and Economic Efficiency in Variable Load Modes

    Premium Partner