skip to main content
research-article

Simulating liquids and solid-liquid interactions with lagrangian meshes

Published:30 April 2013Publication History
Skip Abstract Section

Abstract

This article describes a Lagrangian finite element method that simulates the behavior of liquids and solids in a unified framework. Local mesh improvement operations maintain a high-quality tetrahedral discretization even as the mesh is advected by fluid flow. We conserve volume and momentum, locally and globally, by assigning to each element an independent rest volume and adjusting it to correct for deviations during remeshing and collisions. Incompressibility is enforced with per-node pressure values, and extra degrees of freedom are selectively inserted to prevent pressure locking. Topological changes in the domain are explicitly treated with local mesh splitting and merging. Our method models surface tension with an implicit formulation based on surface energies computed on the boundary of the volume mesh.

With this method we can model elastic, plastic, and liquid materials in a single mesh, with no need for explicit coupling. We also model heat diffusion and thermoelastic effects, which allow us to simulate phase changes. We demonstrate these capabilities in several fluid simulations at scales from millimeters to meters, including simulations of melting caused by external or thermoelastic heating.

Skip Supplemental Material Section

Supplemental Material

tp061.mp4

mp4

17.3 MB

References

  1. Adams, B. and Wicke, M. 2009. Meshless approximation methods and applications in physics based modeling and animation. In Eurographics Tutorials. 213--239.Google ScholarGoogle Scholar
  2. Bargteil, A. W., Goktekin, T. G., O'Brien, J. F., and Strain, J. A. 2006. A semi-Lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1, 19--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3, 16:1--16:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated SPH for deformable solids. In Proceedings of the Eurographics Workshop on Natural Phenomena. 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Belytschko, T. and Glaum, L. W. 1979. Application of higher order corotational stretch theories to nonlinear finite element analysis. Comput. Struct. 10, 1--2, 175--182.Google ScholarGoogle ScholarCross RefCross Ref
  6. Belytschko, T., Krongauz, Y., Organ, D., and Fleming, M. 1996. Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engin. 139, 1, 3--47.Google ScholarGoogle ScholarCross RefCross Ref
  7. Bielser, D., Maiwald, V. A., and Gross, M. H. 1999. Interactive cuts through 3-dimensional soft tissue. Comput. Graph. Forum 18, 3, 31--38.Google ScholarGoogle ScholarCross RefCross Ref
  8. Brackbill, J., Kothe, D., and Zemach, C. 1992. A continuum method for modeling surface tension. J. Comput. Phys. 100, 335--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bro-Nielsen, M. and Cotin, S. 1996. Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum 15, 3, 57--66.Google ScholarGoogle ScholarCross RefCross Ref
  10. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. 29, 4, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Brochu, T. and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4, 2472--2493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Budd, C. J., Huang, W., and Russell, R. D. 2009. Adaptivity with moving grids. In Acta Numerica 2009, Volume 18, 1--131.Google ScholarGoogle Scholar
  13. Caboussat, A., Clausen, P., and Rappaz, J. 2010. Numerical simulation of two-phase flow with interface tracking by adaptive Eulerian grid subdivision. Math. Comput. Model. 55, 490--504.Google ScholarGoogle ScholarCross RefCross Ref
  14. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. A multiresolution framework for dynamic deformations. In Proceedings of the Symposium on Computer Animation. 41--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Cardoze, D., Cunha, A., Miller, G. L., Phillips, T., and Walkington, N. J. 2004. A Bézier-based approach to unstructured moving meshes. In Proceedings of the 20th Annual Symposium on Computational Geometry. 310--319. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23, 3, 377--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Carlson, M., Mucha, P. J., Van Horn III, R. B., and Turk, G. 2002. Melting and flowing. In Proceedings of the Symposium on Computer Animation. 167--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Chen, D. T. and Zeltzer, D. 1992. Pump it up: Computer animation of a biomechanically based model of muscle using the finite element method. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'92). 89--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L., Hauser, K. K., Goldberg, K., Shewchuk, J. R., and O'Brien, J. F. 2009. Interactive simulation of surgical needle insertion and steering. ACM Trans. Graph. 28, 3, 88:1--88:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Chentanez, N., Feldman, B. E., Labelle, F., O'Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proceedings of the Symposium on Computer Animation. 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Chentanez, N., Goktekin, T. G., Feldman, B. E., and O'Brien, J. F. 2006. Simultaneous coupling of fluids and deformable bodies. In Proceedings of the Symposium on Computer Animation. 83--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt, R. J. 2001. Concepts and Applications of Finite Element Analysis 4th Ed. John Wiley & Sons, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Cremonesi, M., Frangi, A., and Perego, U. 2011. A Lagrangian finite element approach for the simulation of water-waves induced by landslides. Comput. Struct. 89, 11--12, 1086--1093. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Dai, M. and Smith, D. P. 2005. Adaptive tetrahedral meshing in free-surface flow. J. Comput. Phys. 208, 1, 228--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. H. 2001. Dynamic real-time deformations using space & time adaptive sampling. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'01). 31--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Dierkes, U., Hildebrandt, S., Kuester, A., and Wohlrab, O. 1992. Minimal Surfaces (I). Springer.Google ScholarGoogle Scholar
  27. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002a. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 1, 83--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Enright, D. P., Marschner, S. R., and Fedkiw, R. P. 2002b. Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Erleben, K., Misztal, M. K., and Bærentzen, J. A. 2011. Mathematical foundation of the optimization-based fluid animation method. In Proceedings of the Symposium on Computer Animation. 101--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Etzmuss, O., Keckeisen, M., and Strasser, W. 2003. A fast finite element solution for cloth modelling. In Proceedings of the Pacific Graphics Conference. 244--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Feldman, B. E., O'Brien, J. F., and Klingner, B. M. 2005a. Animating gases with hybrid meshes. ACM Trans. Graph. 24, 3, 904--909. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Feldman, B. E., O'Brien, J. F., Klingner, B. M., and Goktekin, T. G. 2005b. Fluids in deforming meshes. In Proceedings of the Symposium on Computer Animation. 255--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Foster, N. and Fedkiw, R. 2001. Practical animation of liquids. ACM Trans. Graph. 20, 3, 23--30.Google ScholarGoogle Scholar
  34. Foster, N. and Metaxas, D. 1996. Realistic animation of liquids. Graph. Model. Image Process. 58, 5, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Gerszewski, D., Bhattacharya, H., and Bargteil, A. W. 2009. A point-based method for animating elastoplastic solids. In Proceedings of the Symposium on Computer Animation. 133--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Gourret, J.-P., Thalmann, N. M., and Thalmann, D. 1989. Simulation of object and human skin deformations in a grasping task. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'89). 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Gray, A. 1998. Modern Differential Geometry of Curves and Surfaces with Mathematica. CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Grinspun, E., Krysl, P., and Schröder, P. 2002. CHARMS: A simple framework for adaptive simulation. ACM Trans. Graph. 21, 3, 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24, 3, 973--981. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Guennebaud, G. and Gross, M. 2007. Algebraic point set surfaces. ACM Trans. Graph. 26, 3, 23:1--23:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Harlow, F. H. and Welch, J. E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8, 12, 2182--2189.Google ScholarGoogle ScholarCross RefCross Ref
  43. Hong, J.-M. and Kim, C.-H. 2003. Animation of bubbles in fluid. Comput. Graph. Forum 22, 3, 253--262.Google ScholarGoogle ScholarCross RefCross Ref
  44. Hong, J.-M. and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. 24, 3, 915--920. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Trans. Graph. 26, 3, 13:1--13:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the Symposium on Computer Animation. 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Jones, M. T. and Plassmann, P. E. 1997. Adaptive refinement of unstructured finite-element meshes. Finit. Element Anal. Des. 25, 41--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Kamrin, K. and Nave, J.-C. 2009. An Eulerian approach to the simulation of deformable solids: Application to finite-strain elasticity. http://arxiv.org/pdf/0901.3799.pdf.Google ScholarGoogle Scholar
  49. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28, 3, 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Keiser, R., Adams, B., Gaser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A unified Lagrangian approach to solid-fluid animation. In Proceedings of the Eurographics Symposium on Point-Based Graphics. 125--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Kharevych, L., Mullen, P., Owhadi, H., and Desbrun, M. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3, 51:1--51:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Klingner, B. M., Feldman, B. E., Chentanez, N., and O'Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. 25, 3, 820--825. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Klingner, B. M. and Shewchuk, J. R. 2007. Aggressive tetrahedral mesh improvement. In Proceedings of the 16th International Meshing Roundtable. 3--23.Google ScholarGoogle Scholar
  54. Kobbelt, L. P., Botsch, M., Schwanecke, U., and Seidel, H.-P. 2001. Feature sensitive surface extraction from volume data. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'01). 57--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Kucharik, M., Garimella, R. V., Schofield, S. P., and Shashkov, M. J. 2010. A comparative study of interface reconstruction methods for multi-material ALE simulations. J. Comput. Phys. 229, 7, 2432--2452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Lamb, H. 1932. Hydrodynamics. Cambridge University Press.Google ScholarGoogle Scholar
  57. Landau, L. and Lifshitz, E. 1970. Theory of Elasticity. Pergamon Press, New York.Google ScholarGoogle Scholar
  58. Levin, D. I. W., Litven, J., Jones, G. L., Sueda, S., and Pai, D. K. 2011. Eulerian solid simulation with contact. ACM Trans. Graph. 30, 4, 36:1--36:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23, 3, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Losasso, F., Irving, G., Guendelman, E., and Fedkiw, R. 2006a. Melting and burning solids into liquids and gases. IEEE Trans. Vis. Comput. Graph. 12, 3, 343--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006b. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14, 4, 797--804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., and Gross, M. 2008. Polyhedral finite elements using harmonic basis functions. Comput. Graph. Forum 27, 5, 1521--1529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Mauch, S., Noels, L., Zhao, Z., and Radovitzky, R. A. 2006. Lagrangian simulation of penetration environments via mesh healing and adaptive optimization. In Proceedings of the 25th Army Science Conference.Google ScholarGoogle Scholar
  65. Miller, G. and Pearce, A. 1989. Globular dynamics: A connected particle system for animating viscous fluids. Comput. Graph. 13, 3, 305--309.Google ScholarGoogle ScholarCross RefCross Ref
  66. Misztal, M. K., Bridson, R., Erleben, K., Bærentzen, J. A., and Anton, F. 2010. Optimization-based fluid simulation on unstructured meshes. In Proceedings of the 7th Workshop on Virtual Reality Interaction and Physical Simulation. 11--20.Google ScholarGoogle Scholar
  67. Misztal, M. K., Erleben, K., Bargteil, A. W., Fursund, J., Christensen, B. B., Bærentzen, J. A., and Bridson, R. 2012. Multiphase flow of immiscible fluids on unstructured moving meshes. In Proceedings of the Symposium on Computer Animation. 97--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 3, 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proceedings of the Symposium on Computer Animation. 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Müller, M. and Gross, M. H. 2004. Interactive virtual materials. In Proceedings of the Graphics Interface Conference. 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the Symposium on Computer Animation. 141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Müller, M., McMillan, L., Dorsey, J., and Jagnow, R. 2001. Real-time simulation of deformation and fracture of stiff materials. In Proceedings of the Eurographics Workshop on Computer Animation and Simulation. 113--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Narain, R., Samii, A., and O'Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31, 6, 152:1--152:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3, 52:1--52:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Nour-Omid, B. and Rankin, C. 1991. Finite rotation analysis and consistent linearization using projectors. Comput. Methods Appl. Mech. Engin. 93, 3, 353--384.Google ScholarGoogle ScholarCross RefCross Ref
  76. O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. O'Brien, J. F. and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'99). 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Oden, J. T. and Demkowicz, L. F. 1989. Advances in adaptive improvements: A survey of adaptive finite element methods in computational mechanics. In State-of-the-Art Surveys on Computational Mechanics. The American Society of Mechanical Engineers, 441--467.Google ScholarGoogle Scholar
  79. Osher, S. and Fedkiw, R. 2003. The Level Set Method and Dynamic Implicit Surfaces. Springer.Google ScholarGoogle Scholar
  80. Otaduy, M. A., Germann, D., Redon, S., and Gross, M. 2007. Adaptive deformations with fast tight bounds. In Proceedings of the Symposium on Computer Animation. 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Parker, E. G. and O'Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In Proceedings of the Symposium on Computer Animation. 156--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3, 957--964. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Rayleigh, J. 1879. On the capillary phenomena of jets. Proc. Roy. Soc. London 29, 71--97.Google ScholarGoogle ScholarCross RefCross Ref
  84. Scardovelli, R. and Zaleski, S. 1999. Direct numerical simulation of free surface and interfacial flows. Ann. Rev. Fluid Mech. 31, 567--603.Google ScholarGoogle ScholarCross RefCross Ref
  85. Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Proceedings of the Symposium on Computer Animation. 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Sin, F., Bargteil, A. W., and Hodgins, J. K. 2009. A point-based method for animating incompressible flow. In Proceedings of the Symposium on Computer Animation. 247--255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Smith, J., Witkin, A., and Baraff, D. 2001. Fast and controllable simulation of the shattering of brittle objects. Comput. Graph. Forum 20, 2, 81--91.Google ScholarGoogle ScholarCross RefCross Ref
  88. Stam, J. 1999. Stable fluids. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'99). 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Steinemann, D., Otaduy, M. A., and Gross, M. 2006. Fast arbitrary splitting of deforming objects. In Proceedings of the Symposium on Computer Animation. 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Thürey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. ACM Trans. Graph. 29, 4, 48:1--48:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Wang, H., Mucha, P. J., and Turk, G. 2005. Water drops on surfaces. ACM Trans. Graph. 24, 3, 921--929. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Wang, H., O'Brien, J., and Ramamoorthi, R. 2010. Multi-resolution isotropic strain limiting. ACM Trans. Graph. 29, 6, 156:1--156:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O'Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29, 4, 49:1--49:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. ACM Trans. Graph. 28, 3, 76:1--76:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Trans. Graph. 29, 4, 50:1--50:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Wojtan, C. and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3, 47:1--47:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Zhang, Y., Wang, H., Wang, S., Tong, Y., and Zhou, K. 2012. A deformable surface model for real-time water drop animation. IEEE Trans. Vis. Comput. Graph. 18, 1281--1289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Zhu, Q.-H., Chen, Y., and Kaufman, A. 1998. Real-time biomechanically-based muscle volume deformation using FEM. Comput. Graph. Forum 17, 3, 275--284.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Simulating liquids and solid-liquid interactions with lagrangian meshes

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 32, Issue 2
              April 2013
              134 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/2451236
              Issue’s Table of Contents

              Copyright © 2013 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 30 April 2013
              • Accepted: 1 November 2012
              • Revised: 1 September 2012
              • Received: 1 January 2012
              Published in tog Volume 32, Issue 2

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader