skip to main content
research-article

Co-hierarchical analysis of shape structures

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We introduce an unsupervised co-hierarchical analysis of a set of shapes, aimed at discovering their hierarchical part structures and revealing relations between geometrically dissimilar yet functionally equivalent shape parts across the set. The core problem is that of representative co-selection. For each shape in the set, one representative hierarchy (tree) is selected from among many possible interpretations of the hierarchical structure of the shape. Collectively, the selected tree representatives maximize the within-cluster structural similarity among them. We develop an iterative algorithm for representative co-selection. At each step, a novel cluster-and-select scheme is applied to a set of candidate trees for all the shapes. The tree-to-tree distance for clustering caters to structural shape analysis by focusing on spatial arrangement of shape parts, rather than their geometric details. The final set of representative trees are unified to form a structural co-hierarchy. We demonstrate co-hierarchical analysis on families of man-made shapes exhibiting high degrees of geometric and finer-scale structural variabilities.

Skip Supplemental Material Section

Supplemental Material

tp193.mp4

mp4

18 MB

References

  1. Attene, M., Falcidieno, B., and Spagnuolo, M. 2006. Hierarchical mesh segmentation based on fitting primitives. Visual Computer 22, 3, 181--193. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Carlson-Radvansky, L., Covey, E., and Lattanzi, K. 1999. "What" effects on "where": Functional influence on spatial relations. Psychological Science 10, 6, 519--521.Google ScholarGoogle ScholarCross RefCross Ref
  3. Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3D modeling. ACM Trans. on Graph (SIGGRAPH) 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3D mesh segmentation. ACM Trans. on Graph (SIGGRAPH) 28, 3, 73:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. de Goes, F., Goldenstein, S., and Velho, L. 2008. A hierarchical segmentation of articulated bodies. Computer Graphics Forum (SGP) 27, 5, 1349--1356. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Everitt, B. S., Landau, S., Leese, M., and Stahl, D. 2011. Cluster Analysis. Series in Probability and Statistics. Wiley.Google ScholarGoogle Scholar
  7. Fisher, M., Savva, M., and Hanrahan, P. 2011. Characterizing structural relationships in scenes using graph kernels. ACM Trans. on Graph (SIGGRAPH) 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Goldman, R. N. 1992. Decomposing linear and affine transformations. In Graphics Gems III. Academic Press, 108--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Golovinskiy, A., and Funkhouser, T. 2008. Randomized cuts for 3D mesh analysis. ACM Trans. on Graph 27, 5, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Golovinskiy, A., and Funkhouser, T. 2009. Consistent segmentation of 3D models. Computers & Graphics (Proc. of SMI) 33, 3, 262--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hoffman, D. D., and Richards, W. A. 1984. Parts of recognition. Cognition, 65--96.Google ScholarGoogle Scholar
  12. Huang, Q., Koltun, V., and Guibas, L. 2011. Joint shape segmentation with linear programming. ACM Trans. on Graph (SIGGRAPH Asia) 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jain, A., Thormählen, T., Ritschel, T., and Seidel, H.-P. 2012. Exploring shape variations by 3D-model decomposition and part-based recombination. Computer Graphics Forum (Eurographics) 31, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3D mesh segmentation and labeling. ACM Trans. on Graph (SIGGRAPH) 29, 3, 102:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V. 2012. A probabilistic model of component-based shape synthesis. ACM Trans. on Graph (SIGGRAPH) 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. on Graph (SIGGRAPH) 22, 3, 954--961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kim, Y. M., Mitra, N., Yan, D., and Guibas, L. 2012. Acquiring 3D indoor environments with variability and repetition. ACM Trans. on Graph (SIGGRAPH Asia) 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kraevoy, V., Julius, D., and Sheffer, A. 2007. Model composition from interchangeable components. In Proc. Pacific Graphics, 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Liu, R., and Zhang, H. 2007. Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum (Eurographics) 26, 3, 385--394.Google ScholarGoogle ScholarCross RefCross Ref
  20. Martinet, A. 2007. Structuring 3D Geometry based on Symmetry and Instancing Information. PhD thesis, INP Grenoble.Google ScholarGoogle Scholar
  21. Mitra, N. J., Yang, Y.-L., Yan, D.-M., Li, W., and Agrawala, M. 2010. Illustrating how mechanical assemblies work. ACM Trans. on Graph (SIGGRAPH) 29, 58:1--58:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nadler, B., Lafon, S., Coifman, R. R., and Kevrekidis, I. G. 2005. Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators. In NIPS, 1--8.Google ScholarGoogle Scholar
  23. Ovsjanikov, M., Li, W., Guibas, L., and Mitra, N. J. 2011. Exploration of continuous variability in collections of 3D shapes. ACM Trans. on Graph (SIGGRAPH) 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Palmer, S. E. 1977. Hierarchical structure in perceptual representation. Cognitive Psychology 9, 4, 441--474.Google ScholarGoogle ScholarCross RefCross Ref
  25. Rose, R. C., and Karnowski, T. P. 2010. Deep machine learning - a new frontier in artificial intelligence research. IEEE Computational Intelligence Magazine 5, 4, 13--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Shamir, A. 2008. A survey on mesh segmentation techniques. Computer Graphics Forum 27, 6, 1539--1556.Google ScholarGoogle ScholarCross RefCross Ref
  27. Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., and Zhang, H. 2010. Contextual part analogies in 3D objects. Int. J. Comp. Vis. 89, 1--2, 309--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. on Graph (SIGGRAPH Asia) 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Sudderth, E. B., Torralba, A., Freeman, W. T., and Willsk, A. S. 2005. Learning hierarchical models of scenes, objects, and parts. In Proc. Int. Conf. on Comp. Vis., 1331--1338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Torsello, A., Hidovic-Rowe, D., and Pelillo, M. 2005. Polynomial-time metrics for attributed trees. IEEE Trans. Pat. Ana. & Mach. Int. 27, 7, 1087--1099. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., and Xiong, Y. 2011. Symmetry hierarchy of man-made objects. Computer Graphics Forum (Eurographics) 30, 2, 287--296.Google ScholarGoogle ScholarCross RefCross Ref
  32. Wang, Y., Asafi, S., van Kaick, O., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Active co-analysis of a set of shapes. ACM Trans. on Graph (SIGGRAPH Asia) 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wolf, L., Bileschi, S., and Meyers, E. 2006. Perception strategies in hierarchical vision systems. In Proc. IEEE Conf. on Comp. Vis. and Pat. Rec., 2153--2160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z. 2010. Style-content separation by anisotropic part scales. ACM Trans. on Graph (SIGGRAPH Asia) 29, 6, 184:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Xu, K., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Fit and diverse: Set evolution for inspiring 3D shape galleries. ACM Trans. on Graph (SIGGRAPH) 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yumer, M., and Kara, L. 2012. Co-abstraction of shape collections. ACM Trans. on Graph (SIGGRAPH Asia) 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zhang, M.-L., and Zhou, Z.-H. 2009. Multi-instance clustering with applications to multi-instance prediction. Applied Intelligence 31, 47--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zheng, Y., Cohen-Or, D., and Mitra, N. J. 2013. Functional substructures for part compatibility. Computer Graphics Forum (Eurographics) 32, 2.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Co-hierarchical analysis of shape structures

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader