skip to main content
10.1145/2470654.2481422acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

iGrasp: grasp-based adaptive keyboard for mobile devices

Published:27 April 2013Publication History

ABSTRACT

Multitouch tablets, such as iPad and Android tablets, support virtual keyboards for text entry. Our 64-user study shows that 98% of the users preferred different keyboard layouts and positions depending on how they were holding these devices. However, current tablets either do not allow keyboard adjustment or require users to manually adjust the keyboards. We present iGrasp, which automatically adapts the layout and position of virtual keyboards based on how and where users are grasping the devices without requiring explicit user input. Our prototype uses 46 capacitive sensors positioned along the sides of an iPad to sense users' grasps, and supports two types of grasp-based automatic adaptation: layout switching and continuous positioning. Our two 18-user studies show that participants were able to begin typing 42% earlier using iGrasp's adaptive keyboard compared to the manually adjustable keyboard. Participants also rated iGrasp much easier to use than the manually adjustable keyboard (4.2 vs 2.9 on five-point Likert scale.)

Skip Supplemental Material Section

Supplemental Material

chi0520-file3.mp4

mp4

45.2 MB

References

  1. Benko, H., Izadi, S., Wilson, A. D., Cao, X., Rosenfeld, D., and Hinckley, K. Design and Evaluation of Interaction Models for Multi-touch Mice. In GI '10, ACM (2010), 253--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Butler, A., Izadi, S., and Hodges, S. SideSight: multi-touch interaction around small devices. In Proceedings of the 21st annual ACM symposium on User interface software and technology, ACM (2008), 201--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cheng, L.-P., Hsiao, F.-I., Liu, Y.-t., and Chen, M. Y. iRotate: Automatic Screen Rotation based on Face Orientation. In Proc. CHI '12, ACM (2012), 2203--2210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cheng, L.-P., Lee, M.-H., Wu, C.-Y., Hsiao, F.-i., Liu, Y.-t., Liang, H.-S., Chiu, Y.-C., Lee, M.-S., and Chen, M. Y. iRotateGrasp: Automatic Screen Rotation based on Grasp of Mobile Devices. In Porc. CHI '13, ACM (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Faraj, K. A., Mojahid, M., and Vigouroux, N. BigKey: A Virtual Keyboard for Mobile Devices. In Proceedings of the 13th International Conference on Human-Computer Interaction. Part III: Ubiquitous and Intelligent Interaction, no. 60, Springer-Verlag (Berlin, Heidelberg, 2009), 3--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Fitrianie, S., and Rothkrantz, L. J. M. An adaptive circular (text) input for handheld devices. In Proc. CompSysTech '11, ACM (2011), 405--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Goel, M., Findlater, L., and Wobbrock, J. O. WalkType: Using Accelerometer Data to Accommodate Situational Impairments in Mobile Touch Screen Text Entry. In Proc. CHI '12, ACM (2012), 2687--2696. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Goel, M., Wobbrock, J. O., and Patel, S. N. GripSense: Using Built-In Sensors to Detect Hand Posture and Pressure on Commodity Mobile Phones. In Proc. UIST '12, ACM (2012), 545--554. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gu, J., and Lee, G. TouchString: a flexible linear multi-touch sensor for prototyping a freeform multi-touch surface. In Adjunct Proc. UIST '11, ACM (2011), 75--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gunawardana, A., Paek, T., and Meek, C. Usability Guided Key-Target Resizing for Soft Keyboards. In Proc IUI '10, ACM (2010), 111--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Harrison, B. L., Fishkin, K. P., Gujar, A., Mochon, C., and Want, R. Squeeze me, hold me, tilt me! An exploration of manipulative user interfaces. In Proc. CHI '98, CHI '98, ACM (1998), 17--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hart, S. G., and Staveland, L. E. Development of Nasa Tlx (Task Load Index): Results of Empirical and Theoretical Research. Human Mental Workload. In Human Mental Workload (1988), 139--183.Google ScholarGoogle Scholar
  13. Himberg, J., Häkkilä, J., Kangas, P., and Mäntyjärvi, J. On-line personalization of a touch screen based keyboard. In Proc. IUI '03, ACM (2003), 77--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hinckley, K., Pierce, J., Sinclair, M., and Horvitz, E. Sensing techniques for mobile interaction. In Proceedings of the 13th annual ACM symposium on User interface software and technology, vol. 2, ACM (2000), 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hinckley, K., and Sinclair, M. Touch-sensing input devices. In Proc. CHI '99, no. May, ACM (1999), 223--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kim, K., Chang, W., Cho, S.-j., Shim, J., Lee, H., Park, J., Lee, Y., and Kim, S. Hand grip pattern recognition for mobile user interfaces. In Proc. AAAI '06, vol. 21, MIT (2006), 1789--1794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kristensson, P.-O., and Zhai, S. SHARK2: a large vocabulary shorthand writing system for pen-based computers. In Proc. UIST '04, no. 2, ACM (2004), 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. MacKenzie, I. S., and Soukoreff, R. W. Phrase sets for evaluating text entry techniques. In Proc. CHI '03 extended abstracts, ACM (2003), 754--755. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Mayzner, M., and Tresselt, M. Tables of Single-letter and Diagram Frequency Counts for Various Word-length and Letter-position Combinations. Psychonomic monograph supplements, v. 1, no. 2, 1965.Google ScholarGoogle Scholar
  20. Nybergh, K., and Himberg, J. Touch detection system for mobile terminals. In Proc. MobileHCI '05, ACM (2004), 331--336.Google ScholarGoogle Scholar
  21. Oliver, B. M. Time Domain Reflectometry. HP Journal (1964), 15(6).Google ScholarGoogle Scholar
  22. Pai, D. K., VanDerLoo, E. W., and Sadhukhan, S. The tango: A tangible tangoreceptive whole-hand human interface. In Proc. World Haptics '05, IEEE Computer Society (2005), 141--147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rudchenko, D., Paek, T., and Badger, E. Text text revolution: a game that improves text entry on mobile touchscreen keyboards. In Proc. Pervasive '11, Pervasive'11, Springer-Verlag (2011), 206--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rudeck, F., and Baudisch, P. Rock-Paper-Fibers: Bringing Physical Affordance to Mobile Touch Devices. In Proc. CHI '12, no. d, ACM (2012), 1929--1932. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sato, M., Poupyrev, I., and Harrison, C. Touché: Enhancing Touch Interaction on Humans, Screens, Liquids, and Everyday Objects. In Proc. CHI '12, ACM (May 2012), 483--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Savage, V., Zhang, X., and Hartmann, B. Midas: Fabricating Custom Capacitive Touch Sensors to Prototype Interactive Objects. In Proc. UIST '12, ACM (2012), 579--588. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Schmidt, A., Aidoo, K., Takaluoma, A., Tuomela, U., Van Laerhoven, K., and Van de Velde, W. Advanced interaction in context. In Handheld and ubiquitous computing, Springer (1999), 89--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Schmidt, A., Beigl, M., and Gellersen, H. There is more to context than location. Computers & Graphics 23, 6 (1999), 893--901.Google ScholarGoogle ScholarCross RefCross Ref
  29. Song, H., Benko, H., Guimbretiere, F., Izadi, S., Cao, X., and Hinckley, K. Grips and gestures on a multi-touch pen. In Proceedings of the 2011 annual conference on Human factors in computing systems, vol. 21, ACM (2011), 1323--1332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Taylor, B., and Bove, Jr., V. Graspables: grasp-recognition as a user interface. In Proceedings of the 27th international conference on Human factors in computing systems, ACM (2009), 917--926. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Veldhuis, R., Bazen, A., Kauffman, J., and Hartel, P. Biometric verification based on grip-pattern recognition. In Security, Steganography, and Watermarking of Multimedia Contents, volume 5306 of Proceedings of SPIE, vol. 31, Centre for Telematics and Information Technology University of Twente (2004), 634--641.Google ScholarGoogle Scholar
  32. Wagner, J., Huot, S., and Mackay, W. BiTouch and BiPad : Designing Bimanual Interaction for Hand-held Tablets. In Proc. CHI '12, ACM (2012), 2317--2326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wimmer, R. FlyEye: grasp-sensitive surfaces using optical fiber. In Proc. TEI '10, ACM (2010), 245--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wimmer, R., and Baudisch, P. Modular and deformable touch-sensitive surfaces based on time domain reflectometry. In Proc. UIST '11, no. 1, ACM (2011), 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wimmer, R., and Boring, S. HandSense: discriminating different ways of grasping and holding a tangible user interface. In Proc. TEI '09, ACM (2009), 359--362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yu, N., Tsai, S., Hsiao, I.-c., Tsai, D., Lee, M., Chen, M., Hung, Y., and Others. Clip-on gadgets: expanding multi-touch interaction area with unpowered tactile controls. In Proc. UIST '11, ACM (2011), 367--372. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. iGrasp: grasp-based adaptive keyboard for mobile devices

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '13: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      April 2013
      3550 pages
      ISBN:9781450318990
      DOI:10.1145/2470654

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 April 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '13 Paper Acceptance Rate392of1,963submissions,20%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader