skip to main content
10.1145/2677199.2680576acmconferencesArticle/Chapter ViewAbstractPublication PagesteiConference Proceedingsconference-collections
research-article

SPATA: Spatio-Tangible Tools for Fabrication-Aware Design

Published:15 January 2015Publication History

ABSTRACT

The physical tools used when designing new objects for digital fabrication are mature, yet disconnected from their virtual accompaniments. SPATA is the digital adaptation of two spatial measurement tools, that explores their closer integration into virtual design environments. We adapt two of the traditional measurement tools: calipers and protractors. Both tools can measure, transfer, and present size and angle. Their close integration into different design environments makes tasks more fluid and convenient. We describe the tools' design, a prototype implementation, integration into different environments, and application scenarios validating the concept.

Skip Supplemental Material Section

Supplemental Material

tei0194.mp4

mp4

91.2 MB

p189.mp4

mp4

353 MB

References

  1. Mitutoyo corporation: http://www.mitutoyo.co.jp/eng/index.html.Google ScholarGoogle Scholar
  2. Arisandi, R., Takami, Y., Otsuki, M., Kimura, A., Shibata, F., and Tamura, H. Enjoying virtual handcrafting with tooldevice. In Adjunct Proc. UIST (2012), 17--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Excalibur Electronics, Inc. Phantom Force Auto-Motion Intelligent Response Chess. Excalibur Electronics, Inc., Excalibur Electronics, Inc., 13755 SW 119th Av, Miami, Florida 33186 U.S.A.Google ScholarGoogle Scholar
  4. Follmer, S., Carr, D., Lovell, E., and Ishii, H. Copycad: remixing physical objects with copy and paste from the real world. In Proc. UIST (2010), 381--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Fröhlich, B., and Plate, J. The cubic mouse: A new device for three-dimensional input. In Proc. CHI (2000), 526--531. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Grossman, T., Balakrishnan, R., and Singh, K. An interface for creating and manipulating curves using a high degree-of-freedom curve input device. In Proc. CHI (2003), 185--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hinckley, K., Pausch, R., Goble, J. C., and Kassell, N. F. Passive real-world interface props for neurosurgical visualization. In Proc. CHI (1994), 452--458. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Lau, M., Hirose, M., Ohgawara, A., Mitani, J., and Igarashi, T. Situated modeling: a shape-stamping interface with tangible primitives. In Proc. TEI (2012), 275--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Lee, J., Post, R., and Ishii, H. Zeron: mid-air tangible interaction enabled by computer controlled magnetic levitation. In Proc. UIST (2011), 327--336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Lee, J., Su, V., Ren, S., and Ishii, H. Handscape: A vectorizing tape measure for on-site measuring applications. In Proc. CHI (2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Mueller, S., Lopes, P., and Baudisch, P. Interactive construction: interactive fabrication of functional mechanical devices. In Proc. UIST (2012), 599--606. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Niiyama, R., Yao, L., and Ishii, H. Weight and volume changing device with liquid metal transfer. In Proc. TEI (2014), 49--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Nowacka, D., and Kirk, D. Tangible autonomous interfaces (tais): Exploring autonomous behaviours in tuis. In Proc. TEI (2014), 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ou, J., Yao, L., Tauber, D., Steimle, J., Niiyama, R., and Ishii, H. jamsheets: Thin interfaces with tunable stiffness enabled by layer jamming. In Proc. TEI (2014), 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Pangaro, G., Maynes-Aminzade, D., and Ishii, H. The actuated workbench: Computer-controlled actuation in tabletop tangible interfaces. In Proc. UIST (2002), 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Rivers, A., Moyer, I. E., and Durand, F. Position-correcting tools for 2d digital fabrication. ACM Trans. Graph. 31, 4 (July 2012), 88:1--88:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Saul, G., Lau, M., Mitani, J., and Igarashi, T. Sketchchair: an all-in-one chair design system for end users. In Proc. TEI (2011), 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Schkolne, S., Pruett, M., and Schröder, P. Surface drawing: creating organic 3d shapes with the hand and tangible tools. In Proc. CHI (2001), 261--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Sheng, J., Balakrishnan, R., and Singh, K. An interface for virtual 3d sculpting via physical proxy. In Proc. GRAPHITE (2006), 213--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Song, H., Guimbreti'ere, F., Hu, C., and Lipson, H. Modelcraft: capturing freehand annotations and edits on physical 3d models. In Proc. UIST (2006), 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Weichel, C., Lau, M., and Gellersen, H. Enclosed: A component-centric interface for designing prototype enclosures. In Proc. TEI (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Weichel, C., Lau, M., Kim, D., Villar, N., and Gellersen, H. Mixfab: A mixed-reality environment for personal fabrication. In Proc. CHI (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Willis, K. D., Lin, J., Mitani, J., and Igarashi, T. Spatial sketch: bridging between movement & fabrication. In Proc. TEI (2010), 5--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Willis, K. D., Xu, C., Wu, K.-J., Levin, G., and Gross, M. D. Interactive fabrication: new interfaces for digital fabrication. In Proc. TEI (2011), 69--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Zoran, A., Shilkrot, R., and Paradiso, J. Human-computer interaction for hybrid carving. In Proc. UIST (2013), 433--440. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. SPATA: Spatio-Tangible Tools for Fabrication-Aware Design

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      TEI '15: Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction
      January 2015
      766 pages
      ISBN:9781450333054
      DOI:10.1145/2677199

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 15 January 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      TEI '15 Paper Acceptance Rate63of222submissions,28%Overall Acceptance Rate393of1,367submissions,29%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader