skip to main content
10.1145/2702123.2702180acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Opportunities and Challenges for Data Physicalization

Published:18 April 2015Publication History

ABSTRACT

Physical representations of data have existed for thousands of years. Yet it is now that advances in digital fabrication, actuated tangible interfaces, and shape-changing displays are spurring an emerging area of research that we call Data Physicalization. It aims to help people explore, understand, and communicate data using computer-supported physical data representations. We call these representations physicalizations, analogously to visualizations -- their purely visual counterpart. In this article, we go beyond the focused research questions addressed so far by delineating the research area, synthesizing its open challenges and laying out a research agenda.

Skip Supplemental Material Section

Supplemental Material

p3227-jansen.mp4

mp4

134.5 MB

References

  1. Alexander, J., Lucero, A., and Subramanian, S. Tilt Displays: Designing display surfaces with multi-axis tilting and actuation. In Mobile HCI (2012), 161--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Andrews, C., Endert, A., Yost, B., and North, C. Information visualization on large, high-resolution displays: Issues, challenges, and opportunities. Information Visualization 10, 4 (2011), 341--355. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ascher, M., and Ascher, R. Mathematics of the Incas: Code of the Quipu. Dover Publications, 2013.Google ScholarGoogle Scholar
  4. Barrass, S. Digital fabrication of acoustic sonifications. J. Audio Eng. Soc. 60, 9 (2012), 709--715.Google ScholarGoogle Scholar
  5. Benko, H., Wilson, A. D., Zannier, F., and Benko, H. Dyadic projected spatial augmented reality. In Proc. UIST (2014), 645--655. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bezerianos, A., and Isenberg, P. Perception of visual variables on tiled wall-sized displays for information visualization applications. TVCG 18, 12 (2012), 2516--2525. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Borghi, A. M., and Cimatti, F. Embodied cognition and beyond: acting and sensing the body. Neuropsychologia 48, 3 (2009), 763--773.Google ScholarGoogle Scholar
  8. Borkin, M., Vo, A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva, A., and Pfister, H. What makes a visualization memorable? TVCG 19, 12 (2013), 2306--2315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Calvert, G., Spence, C., and Stein, B. E. The Handbook of Multisensory Processes. MIT Press, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  10. Card, S., Mackinlay, J. D., and Shneiderman, B., Eds. Readings In Information Visualization: Using Vision To Think. Morgan Kaufmann Publishers, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Carello, C., Wagman, J. B., and Turvey, M. T. Acoustic specification of object properties. In Moving Image Theory: Ecological Considerations. Southern Illinois University, 2005, 79--104.Google ScholarGoogle Scholar
  12. Challis, B. P., and Edwards, A. D. N. Design principles for tactile interaction. In Haptic Human-Computer Interaction. Springer, 2001, 17--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cleveland, W. S., and McGill, R. Graphical perception: Theory, experimentation, and application to the development of graphical methods. J. Am. Stat. Assoc. 79, 387 (1984), 531--554.Google ScholarGoogle ScholarCross RefCross Ref
  14. Danziger, M. Information visualization for the people. Master's thesis, MIT, 2008.Google ScholarGoogle Scholar
  15. Dragicevic, P., and Jansen, Y. List of physical visualizations. dataphys.org/list, 2012.Google ScholarGoogle Scholar
  16. Edman, P. Tactile Graphics. AFB, 1992.Google ScholarGoogle Scholar
  17. Follmer, S., Leithinger, D., Olwal, A., Cheng, N., and Ishii, H. Jamming user interfaces: Programmable particle stiffness and sensing for malleable and shape-changing devices. In Proc. UIST (2012), 519--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Follmer, S., Leithinger, D., Olwal, A., Hogge, A., and Ishii, H. inFORM: Dynamic physical affordances and constraints through shape and object actuation. In Proc. UIST (2013), 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Froebel, F. The Education of Man. A. Lovell & Co, 1885.Google ScholarGoogle Scholar
  20. Gibson, J. J. The Ecological Approach to Visual Perception. Psychology Press, 1986.Google ScholarGoogle Scholar
  21. Gilpin, K., Koyanagi, K., and Rus, D. Making self-disassembling objects with multiple components in the Robot Pebbles system. In ICRA (2011), 3614--3621.Google ScholarGoogle ScholarCross RefCross Ref
  22. Griffin, A. L. Feeling it out: the use of haptic visualization for exploratory geographic analysis. Cartographic Perspectives, 39 (2001), 12--29.Google ScholarGoogle ScholarCross RefCross Ref
  23. Heer, J., Ham, F., Carpendale, S., Weaver, C., and Isenberg, P. Creation and collaboration: Engaging new audiences for information visualization. In Information Visualization, LNCS. Springer, 2008, 92--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Heer, J., and Robertson, G. G. Animated transitions in statistical data graphics. TVCG 13, 6 (2007), 1240--1247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hiller, J., and Lipson, H. Design and analysis of digital materials for physical 3d voxel printing. Rapid Prototyping Journal 15, 2 (2009), 137--149.Google ScholarGoogle ScholarCross RefCross Ref
  26. Hogan, T., and Hornecker, E. How does representation modality affect user-experience of data artifacts? In Haptic & Audio Inter. Design. Springer, 2012, 141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Hornecker, E. The role of physicality in tangible and embodied interactions. Interactions 18, 2 (2011), 19--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Hornecker, E., and Buur, J. Getting a grip on tangible interaction: a framework on physical space and social interaction. In Proc. CHI (2006), 437--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Huron, S., Jansen, Y., and Carpendale, S. Constructing visual representations: investigating the use of tangible tokens. TVCG 20, 12 (2014), 2102--2111.Google ScholarGoogle ScholarCross RefCross Ref
  30. Ishii, H., Lakatos, D., Bonanni, L., and Labrune, J.-B. Radical Atoms: Beyond Tangible Bits, toward transformable materials. Interactions 19, 1 (2012), 38--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ishii, H., and Ullmer, B. Tangible Bits: towards seamless interfaces between people, bits and atoms. In Proc. CHI, ACM (1997), 234--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Jansen, Y. Physical and Tangible Information Visualization. PhD thesis, Université Paris-Sud XI, 2014.Google ScholarGoogle Scholar
  33. Jansen, Y., and Dragicevic, P. An interaction model for visualizations beyond the desktop. TVCG 19, 12 (2013), 2396--2405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Jansen, Y., Dragicevic, P., and Fekete, J.-D. Evaluating the efficiency of physical visualizations. In Proc. CHI (2013), 2593--2602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Kildal, J. Kooboh: Variable tangible properties in a handheld Haptic-Illusion box. In Proc. EuroHaptics'12. Springer, 2012, 191--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Kosara, R. Visualization criticism-the missing link between information visualization and art. In Proc. IV (2007), 631--636. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Lam, H., Bertini, E., Isenberg, P., Plaisant, C., and Carpendale, S. Empirical studies in information visualization: Seven scenarios. TVCG 18, 9 (2012), 1520--1536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Lederman, S. J., and Klatzky, R. L. Hand movements: a window into haptic object recognition. Cogn. Psychol. 19, 3 (July 1987), 342--368.Google ScholarGoogle ScholarCross RefCross Ref
  39. Lee, J., Post, R., and Ishii, H. ZeroN: Mid-air tangible interaction enabled by computer controlled magnetic levitation. In Proc. UIST (2011), 327--336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Lee, J. C. In search of a natural gesture. ACM Crossroads 16, 4 (2010), 9--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. McGookin, D., Robertson, E., and Brewster, S. Clutching at straws: using tangible interaction to provide non-visual access to graphs. In Proc. CHI (2010), 1715--1724. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. McGookin, D. K., and Brewster, S. A. SoundBar: Exploiting multiple views in multimodal graph browsing. In Proc. NordiCHI (2006), 145--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Moere, A. V. Beyond the tyranny of the pixel: Exploring the physicality of information visualization. In Proc. IV (2008), 469--474. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Munzner, T. Process and pitfalls in writing information visualization research papers. In Information Visualization. Springer, 2008, 134--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., and Kokaji, S. M-TRAN: Self-reconfigurable modular robotic system. TMECH 7, 4 (2002), 431--441.Google ScholarGoogle Scholar
  46. Niiyama, R., Yao, L., and Ishii, H. Weight and volume changing device with liquid metal transfer. In Proc. TEI (2014), 49--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Olberding, S., Wessely, M., and Steimle, J. Printscreen: fabricating highly customizable thin-film touch-displays. In Proc. UIST (2014), 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. O'Malley, C., and Fraser, S. Literature review in learning with tangible technologies. Tech. rep., Futurelab, 2004.Google ScholarGoogle Scholar
  49. Piper, B., Ratti, C., and Ishii, H. Illuminating clay: A 3-D tangible interface for landscape analysis. In Proc. CHI (2002), 355--362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Plaisant, C. The challenge of information visualization evaluation. In Proc. AVI (2004), 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Plaisant, C., Fekete, J., and Grinstein, G. Promoting insight-based evaluation of visualizations: From contest to benchmark repository. TVCG 14, 1 (2008), 120--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Poupyrev, I., Nashida, T., Maruyama, S., Rekimoto, J., and Yamaji, Y. Lumen: interactive visual and shape display for calm computing. In SIGGRAPH Emerging Technologies (2004), 17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Pousman, Z., Stasko, J. T., and Mateas, M. Casual information visualization: Depictions of data in everyday life. TVCG 13, 6 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Rasmussen, M. K., Pedersen, E. W., Petersen, M. G., and Hornbæk, K. Shape-changing interfaces: a review of the design space and open research questions. In Proc. CHI (2012), 735--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Reber, R., Schwarz, N., and Winkielman, P. Processing fluency and aesthetic pleasure: Is beauty in the perceiver's processing experience? Personality and Social Psychology Review 8, 4 (2004), 364--382.Google ScholarGoogle ScholarCross RefCross Ref
  56. Roberts, J. C., and Walker, R. Using all our senses: the need for a unified theoretical approach to multi-sensory information visualization. In VisWeek Workshop (2010).Google ScholarGoogle Scholar
  57. Romanishin, J., Gilpin, K., and Rus, D. M-blocks: Momentum-driven, magnetic modular robots. In Proc. IROS, IEEE/RSJ (2013), 4288--4295.Google ScholarGoogle ScholarCross RefCross Ref
  58. Roudaut, A., Karnik, A., Löchtefeld, M., and Subramanian, S. Morphees: Toward high "shape resolution" in self-actuated flexible mobile devices. In Proc. CHI (2013), 593--602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Schmandt-Besserat, D. How Writing Came About. University of Texas Press, 1996.Google ScholarGoogle Scholar
  60. Schweikardt, E., and Gross, M. D. roBlocks: A robotic construction kit for mathematics and science education. In Proc. ICMI (2006), 72--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Seah, S., Drinkwater, B., Carter, T., Malkin, R., and Subramanian, S. Dexterous ultrasonic levitation of millimeter-sized objects in air. UFFC 61, 7 (2014), 1233--1236.Google ScholarGoogle Scholar
  62. Seah, S. A., Martinez Plasencia, D., Bennett, P. D., Karnik, A., Otrocol, V. S., Knibbe, J., Cockburn, A., and Subramanian, S. SensaBubble: A chrono-sensory mid-air display of sight and smell. In Proc. CHI (2014), 2863--2872. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Shaer, O., and Hornecker, E. Tangible user interfaces: Past, present, and future directions. Found. Trends Hum. -Comput. Interact. 3 (2010), 1--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Spelke, E. S. The development of intermodal perception. In Handbook of Infant Perception. Academic Press, 1987, 233--273.Google ScholarGoogle Scholar
  65. Steimle, J., Jordt, A., and Maes, P. Flexpad: highly flexible bending interactions for projected handheld displays. In Proc. CHI (2013), 237--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Stusak, S., and Aslan, A. Beyond physical bar charts: An exploration of designing physical visualizations. In Proc. CHI-EA (2014), 1381--1386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Stusak, S., Tabard, A., and Butz, A. Can physical visualizations support analytical tasks? In Posters of IEEE InfoVis (2013).Google ScholarGoogle Scholar
  68. Stusak, S., Tabard, A., Sauka, F., Khot, R., and Butz, A. Activity sculptures: Exploring the impact of physical visualizations on running activity. TVCG 20, 12 (2014), 2201--2210.Google ScholarGoogle ScholarCross RefCross Ref
  69. Swaminathan, S., Shi, C., Jansen, Y., Dragicevic, P., Oehlberg, L., and Fekete, J.-D. Supporting the design and fabrication of physical visualizations. In Proc. CHI (2014), 3845--3854. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Tang, S. K., Sekikawa, Y., Leithinger, D., Follmer, S., and Ishii, H. Tangible cityscape, 2013. tinyurl.com/tcityscape.Google ScholarGoogle Scholar
  71. Ullmer, B., and Ishii, H. Emerging frameworks for tangible user interfaces. IBM Syst. J. 39 (July 2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Ullmer, B., Ishii, H., and Jacob, R. J. K. Tangible query interfaces: Physically constrained tokens for manipulating database queries. In Proc. INTERACT (2003), 279--286.Google ScholarGoogle Scholar
  73. Underkoffier, J., and Ishii, H. Urp: A luminous-tangible workbench for urban planning and design. In Proc. CHI (1999), 386--393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Van Wijk, J. J. The value of visualization. In Proc. VIS (2005), 79--86.Google ScholarGoogle Scholar
  75. Vande Moere, A., and Patel, S. The Physical Visualization of Information: Designing Data Sculptures in an Educational Context. In Visual Information Communication. Springer, 2010, pp. 1--23.Google ScholarGoogle Scholar
  76. Wobbrock, J. O., Morris, M. R., and Wilson, A. D. User-defined gestures for surface computing. In Proc. CHI (2009), 1083--1092. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Wu, H.-K., and Shah, P. Exploring visuospatial thinking in chemistry learning. Science Education 88, 3 (2004), 465--492.Google ScholarGoogle ScholarCross RefCross Ref
  78. Yao, L., Niiyama, R., Ou, J., Follmer, S., Della Silva, C., and Ishii, H. PneUI: Pneumatically actuated soft composite materials for shape changing interfaces. In Proc. UIST (2013), 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Zhao, J., and Vande Moere, A. Embodiment in data sculpture: A model of the physical visualization of information. In Proc. DIMEA (2008), 343--350. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Opportunities and Challenges for Data Physicalization

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '15: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems
      April 2015
      4290 pages
      ISBN:9781450331456
      DOI:10.1145/2702123

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 18 April 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '15 Paper Acceptance Rate486of2,120submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader