skip to main content
research-article

Microstructures to control elasticity in 3D printing

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We propose a method for fabricating deformable objects with spatially varying elasticity using 3D printing. Using a single, relatively stiff printer material, our method designs an assembly of small-scale microstructures that have the effect of a softer material at the object scale, with properties depending on the microstructure used in each part of the object. We build on work in the area of metamaterials, using numerical optimization to design tiled microstructures with desired properties, but with the key difference that our method designs families of related structures that can be interpolated to smoothly vary the material properties over a wide range. To create an object with spatially varying elastic properties, we tile the object's interior with microstructures drawn from these families, generating a different microstructure for each cell using an efficient algorithm to select compatible structures for neighboring cells. We show results computed for both 2D and 3D objects, validating several 2D and 3D printed structures using standard material tests as well as demonstrating various example applications.

Skip Supplemental Material Section

Supplemental Material

References

  1. Attard, D., and Grima, J. N. 2012. A three-dimensional rotating rigid units network exhibiting negative poisson's ratios. physica status solidi (b) 249, 7, 1330--1338.Google ScholarGoogle Scholar
  2. Babaee, S., Shim, J., Weaver, J. C., Patel, N., and Bertoldi, K. 2013. 3d soft metamaterials with negative poisson's ratio. Advanced Materials 25, 5044--5049.Google ScholarGoogle ScholarCross RefCross Ref
  3. Becker, M., and Teschner, M. 2007. Robust and efficient estimation of elasticity parameters using the linear finite element method. In Proceedings of the Conference on Simulation and Visualization (SimVis), 15--28.Google ScholarGoogle Scholar
  4. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. 1995. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190--1208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chen, D., Levin, D. I. W., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cioranescu, D., and Donato, P. 2000. Introduction to homogenization.Google ScholarGoogle Scholar
  8. Coelho, P., Fernandes, P., Guedes, J., and Rodrigues, H. 2008. A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Structural and Multidisciplinary Optimization 35, 2, 107--115.Google ScholarGoogle ScholarCross RefCross Ref
  9. Derbinsky, N., Bento, J., Elser, V., and Yedidia, J. S. 2013. An improved three-weight message-passing algorithm. arXiv:1305.1961.Google ScholarGoogle Scholar
  10. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hashin, Z., and Shtrikman, S. 1963. A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids 11, 2, 127--140.Google ScholarGoogle ScholarCross RefCross Ref
  13. Hiller, J., and Lipson, H. 2012. Automatic design and manufacture of soft robots. Robotics, IEEE Transactions on 28, 2, 457--466. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Huang, X., Radman, A., and Xie, Y. 2011. Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Computational Materials Science 50, 6, 1861--1870.Google ScholarGoogle ScholarCross RefCross Ref
  15. Hughes, T., Marmier, A., and Evans, K. 2010. Auxetic frameworks inspired by cubic crystals. International Journal of Solids and Structures 47, 11.Google ScholarGoogle ScholarCross RefCross Ref
  16. Kharevych, L., Mullen, P., Owhadi, H., and Desbrun, M. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lakes, R. 1987. Foam structures with a negative poisson's ratio. Science 235, 4792, 1038--1040.Google ScholarGoogle Scholar
  18. Lan, Y., Dong, Y., Pellacini, F., and Tong, X. 2013. Bi-scale appearance fabrication. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lee, J.-H., Singer, J. P., and Thomas, E. L. 2012. Micro-/nanostructured mechanical metamaterials. Advanced Materials 24, 36, 4782--4810.Google ScholarGoogle ScholarCross RefCross Ref
  20. Michel, J., Moulinec, H., and Suquet, P. 1999. Effective properties of composite materials with periodic microstructure: a computational approach. Computer methods in applied mechanics and engineering 172, 1, 109--143.Google ScholarGoogle Scholar
  21. Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Computer Graphics Forum 25, 4, 809--836.Google ScholarGoogle ScholarCross RefCross Ref
  22. Nealen, A. 2004. An as-short-as-possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation. Tech. rep., TU Darsmstadt.Google ScholarGoogle Scholar
  23. Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Reiner, T., Carr, N., Mech, R., Stava, O., Dachsbacher, C., and Miller, G. 2014. Dual-color mixing for fused deposition modeling printers. Computer Graphics Forum (EUROGRAPHICS 2014 Proceedings) 33, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Rodrigues, H., Guedes, J., and Bendsoe, M. 2002. Hierarchical optimization of material and structure. Structural and Multidisciplinary Optimization 24, 1, 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  26. Rouiller, O., Bickel, B., Kautz, J., Matusik, W., and Alexa, M. 2013. 3d-printing spatially varying brdfs. Computer Graphics and Applications, IEEE 33, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sifakis, E., and Barbic, J. 2012. Fem simulation of 3d deformable solids: a practitioner's guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses, 20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sigmund, O., and Petersson, J. 1998. Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural optimization 16, 1, 68--75.Google ScholarGoogle Scholar
  29. Sigmund, O. 2009. Systematic design of metamaterials by topology optimization. In IUTAM Symposium on Modelling Nanomaterials and Nanosystems, Springer, 151--159.Google ScholarGoogle ScholarCross RefCross Ref
  30. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Smit, R., Brekelmans, W., and Meijer, H. 1998. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155, 1, 181--192.Google ScholarGoogle ScholarCross RefCross Ref
  32. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: improving structural strength of 3d printable objects. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Vidimče, K., Wang, S.-P., Ragan-Kelley, J., and Matusik, W. 2013. Openfab: A programmable pipeline for multimaterial fabrication. ACM Trans. Graph. (Proc. SIGGRAPH) 32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., and Liu, X. 2013. Cost-effective printing of 3d objects with skin-frame structures. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Xu, H., Li, Y., Chen, Y., and Barbič, J. 2015. Interactive material design using model reduction. ACM Trans. Graph. (TOG) 34, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zhou, S., and Li, Q. 2008. Design of graded two-phase microstructures for tailored elasticity gradients. Journal of Materials Science 43, 15, 5157--5167.Google ScholarGoogle ScholarCross RefCross Ref
  38. Zhou, Q., Panetta, J., and Zorin, D. 2013. Worst-case structural analysis. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Microstructures to control elasticity in 3D printing

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 34, Issue 4
          August 2015
          1307 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2809654
          Issue’s Table of Contents

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 July 2015
          Published in tog Volume 34, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader