skip to main content
10.1145/2856400.2856404acmconferencesArticle/Chapter ViewAbstractPublication Pagesi3dConference Proceedingsconference-collections
research-article

Precision: precomputing environment semantics for contact-rich character animation

Published:27 February 2016Publication History

ABSTRACT

The widespread availability of high-quality motion capture data and the maturity of solutions to animate virtual characters has paved the way for the next generation of interactive virtual worlds exhibiting intricate interactions between characters and the environments they inhabit. However, current motion synthesis techniques have not been designed to scale with complex environments and contact-rich motions, requiring environment designers to manually embed motion semantics in the environment geometry in order to address online motion synthesis. This paper presents an automated approach for analyzing both motions and environments in order to represent the different ways in which an environment can afford a character to move. We extract the salient features that characterize the contact-rich motion repertoire of a character and detect valid transitions in the environment where each of these motions may be possible, along with additional semantics that inform which surfaces of the environment the character may use for support during the motion. The precomputed motion semantics can be easily integrated into standard navigation and animation pipelines in order to greatly enhance the motion capabilities of virtual characters. The computational efficiency of our approach enables two additional applications. Environment designers can interactively design new environments and get instant feedback on how characters may potentially interact, which can be used for iterative modeling and refinement. End users can dynamically edit virtual worlds and characters will automatically accommodate the changes in the environment in their movement strategies.

Skip Supplemental Material Section

Supplemental Material

p29-park.mp4

mp4

48.1 MB

References

  1. Al-Asqhar, R. A., Komura, T., and Choi, M. G. 2013. Relationship descriptors for interactive motion adaptation. In ACM SIGGRAPH/EG SCA, ACM, 45--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arikan, O., and Forsyth, D. A. 2002. Interactive motion generation from examples. ACM Trans. Graph. 21, 3 (July), 483--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Berseth, G., Usman, M., Haworth, B., Kapadia, M., and Faloutsos, P. 2015. Environment optimization for crowd evacuation. CAVW 26, 3-4, 377--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Choi, M. G., Lee, J., and Shin, S. Y. 2003. Planning biped locomotion using motion capture data and probabilistic roadmaps. ACM Trans. Graph. 22, 2 (Apr.), 182--203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Choi, M. G., Kim, M., Hyun, K., and Lee, J. 2011. Deformable Motion: Squeezing into Cluttered Environments. Comput. Graph. Forum 30, 2, 445--453.Google ScholarGoogle ScholarCross RefCross Ref
  6. Coros, S., Beaudoin, P., and van de Panne, M. 2009. Robust task-based control policies for physics-based characters. ACM Trans. Graph. 28, 5 (Dec.), 170:1--170:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. In ACM SIGGRAPH, ACM, 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hart, P., Nilsson, N., and Raphael, B. 1968. A formal basis for the heuristic determination of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on 4, 2 (July), 100--107.Google ScholarGoogle Scholar
  9. Hauser, K., Bretl, T., and Latombe, J.-C. 2005. Non-gaited humanoid locomotion planning. In Humanoid Robots, 2005 5th IEEE-RAS International Conference on, 7--12.Google ScholarGoogle Scholar
  10. Heck, R., and Gleicher, M. 2007. Parametric motion graphs. In ACM SIGGRAPH I3D, 129--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ho, E. S. L., and Komura, T. 2009. Character motion synthesis by topology coordinates. In CGF, vol. 28.Google ScholarGoogle Scholar
  12. Hudson, T. C., Lin, M. C., Cohen, J., Gottschalk, S., and Manocha, D. 1997. V-collide: Accelerated collision detection for vrml. In VRML, ACM, 117--ff. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Johansen, R. 2009. Automated semi-procedural animation for character locomotion. PhD thesis.Google ScholarGoogle Scholar
  14. Kalisiak, M., and van de Panne, M. 2001. A grasp-based motion planning algorithm for character animation. Journal of Visualization and Computer Animation 12, 3, 117--129.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kallmann, M., and Kapadia, M. 2014. Navigation meshes and real-time dynamic planning for virtual worlds. In ACM SIGGRAPH 2014 Courses, ACM, New York, NY, USA, SIGGRAPH '14, 3:1--3:81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kang, C., and Lee, S.-H. 2014. Environment-adaptive contact poses for virtual characters. Computer Graphics Forum 33, 7, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kapadia, M., Chiang, I.-k., Thomas, T., Badler, N. I., and Kider, Jr., J. T. 2013. Efficient motion retrieval in large motion databases. In ACM SIGGRAPH I3D, ACM, 19--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kim, M., Hwang, Y., Hyun, K., and Lee, J. 2012. Tiling motion patches. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA '12, 117--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kim, V. G., Chaudhuri, S., Guibas, L., and Funkhouser, T. 2014. Shape2pose: Human-centric shape analysis. ACM Trans. Graph. 33, 4 (July), 120:1--120:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. In ACM SIGGRAPH, ACM, 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lau, M., and Kuffner, J. J. 2005. Behavior planning for character animation. In ACM SIGGRAPH/EG SCA, ACM, 271--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lau, M., and Kuffner, J. J. 2006. Precomputed search trees: Planning for interactive goal-driven animation. In ACM SIGGRAPH/Eurographics SCA, 299--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lau, M., and Kuffner, J. 2010. Scalable precomputed search trees. In MIG, 70--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lee, J., and Lee, K. H. 2004. Precomputing avatar behavior from human motion data. In ACM SIGGRAPH/EG SCA, Eurographics Association, 79--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. 2002. Interactive control of avatars animated with human motion data. In ACM SIGGRAPH, ACM, 491--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lee, Y., Lee, S. J., and Popović, Z. 2009. Compact character controllers. ACM Trans. Graph. 28, 5 (Dec.), 169:1--169:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Levine, S., Lee, Y., Koltun, V., and Popović, Z. 2011. Space-time planning with parameterized locomotion controllers. ACM Trans. Graph. 30, 3 (May), 23:1--23:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Liu, L., Yin, K., van de Panne, M., Shao, T., and Xu, W. 2010. Sampling-based contact-rich motion control. ACM Trans. Graph. 29, 4 (July), 128:1--128:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Liu, L., Yin, K., van de Panne, M., and Guo, B. 2012. Terrain runner: control, parameterization, composition, and planning for highly dynamic motions. ACM Trans. Graph. 31, 6 (Nov.), 154:1--154:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Lo, W.-Y., and Zwicker, M. 2008. Real-time planning for parameterized human motion. In ACM SIGGRAPH/Eurographics SCA, 29--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. McCann, J., and Pollard, N. 2007. Responsive characters from motion fragments. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Memononen, M. 2014. Recast: Navigation-mesh toolset for games.Google ScholarGoogle Scholar
  33. Min, J., and Chai, J. 2012. Motion graphs++: A compact generative model for semantic motion analysis and synthesis. ACM Trans. Graph. 31, 6 (Nov.), 153:1--153:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Mordatch, I., Todorov, E., and Popović, Z. 2012. Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. 31, 4 (July), 43:1--43:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Safonova, A., and Hodgins, J. K. 2007. Construction and optimal search of interpolated motion graphs. In ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Shoulson, A., Marshak, N., Kapadia, M., and Badler, N. I. 2013. ADAPT: the agent development and prototyping testbed. In ACM SIGGRAPH I3D, ACM, 9--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Shoulson, A., Marshak, N., Kapadia, M., and Badler, N. I. 2014. Adapt: The agent development and prototyping testbed. IEEE TVCG 20, 7 (July), 1035--1047. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Singh, S., Kapadia, M., Reinman, G., and Faloutsos, P. 2011. Footstep navigation for dynamic crowds. CAVW 22, 2-3, 151--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Tonneau, S., Pettré, J., and Multon, F. 2014. Task efficient contact configurations for arbitrary virtual creatures. In Graphics Interface, 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Ubisoft. 2014. Assassins creed.Google ScholarGoogle Scholar
  41. Xiao, J., Zhuang, Y., Yang, T., and Wu, F. 2006. An efficient keyframe extraction from motion capture data. In Advances in Computer Graphics, vol. 4035 of LNCS. Springer Berlin Heidelberg, 494--501. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Zhao, L., Normoyle, A., Khanna, S., and Safonova, A. 2009. Automatic construction of a minimum size motion graph. In ACM SIGGRAPH/EG SCA, ACM, 27--35. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    I3D '16: Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
    February 2016
    200 pages
    ISBN:9781450340434
    DOI:10.1145/2856400

    Copyright © 2016 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 27 February 2016

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    Overall Acceptance Rate148of485submissions,31%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader