skip to main content
research-article

Terrain runner: control, parameterization, composition, and planning for highly dynamic motions

Published:01 November 2012Publication History
Skip Abstract Section

Abstract

In this paper we learn the skills required by real-time physics-based avatars to perform parkour-style fast terrain crossing using a mix of running, jumping, speed-vaulting, and drop-rolling. We begin with a single motion capture example of each skill and then learn reduced-order linear feedback control laws that provide robust execution of the motions during forward dynamic simulation. We then parameterize each skill with respect to the environment, such as the height of obstacles, or with respect to the task parameters, such as running speed and direction. We employ a continuation process to achieve the required parameterization of the motions and their affine feedback laws. The continuation method uses a predictor-corrector method based on radial basis functions. Lastly, we build control laws specific to the sequential composition of different skills, so that the simulated character can robustly transition to obstacle clearing maneuvers from running whenever obstacles are encountered. The learned transition skills work in tandem with a simple online step-based planning algorithm, and together they robustly guide the character to achieve a state that is well-suited for the chosen obstacle-clearing motion.

References

  1. Arikan, O., and Forsyth, D. A. 2003. Interactive motion generation from examples. ACM Transactions on Graphics 21, 3, 483--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., and Evans, T. R. 2001. Reconstruction and representation of 3d objects with radial basis functions. In SIGGRAPH '01, 67--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chai, J., and Hodgins, J. K. 2007. Constraint-based motion optimization using a statistical dynamic model. ACM Transactions on Graphics 26, 3, Article 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Choi, M. G., Kim, M., Hyun, K., and Lee, J. 2011. Deformable motion: Squeezing into cluttered environments. Computer Graphics Forum (EUROGRAPHICS 2011) 30, 2, 445--453.Google ScholarGoogle Scholar
  5. Coros, S., Beaudoin, P., and van de Panne, M. 2009. Robust task-based control policies for physics-based characters. ACM Transctions on Graphics 28, 5, Article 170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Coros, S., Beaudoin, P., and van de Panne, M. 2010. Generalized biped walking control. ACM Transctions on Graphics 29, 4, Article 130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Coros, S., Karpathy, A., Jones, B., Reveret, L., and van de Panne, M. 2011. Locomotion skills for simulated quadrupeds. ACM Transactions on Graphics 30, 4, Article 59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Trans. Graph. 27, 3, Article 82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. da Silva, M., Durand, F., and Popović, J. 2009. Linear bellman combination for control of character animation. ACM Trans. Graph. 28, 3, Article 82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ding, K., Liu, L., van de Panne, M., and Yin, K. 2012. Learning reduced-order feedback policies for motion skills. Tech. Rep. TR-2012-06, University of British Columbia.Google ScholarGoogle Scholar
  11. Edwardes, D. 2009. The Parkour and Freerunning Handbook, first ed. HarperCollins Publishers.Google ScholarGoogle Scholar
  12. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proceedings of SIGGRAPH 2001, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gutmann, A. K., Jacobi, B., Butcher, M. T., and Bertram, J. E. A. 2006. Constrained optimization in human running. The Journal of Experimental Biology 209, 622--632.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hansen, N. 2006. The cma evolution strategy: A comparing review. In Towards a New Evolutionary Computation, 75--102.Google ScholarGoogle Scholar
  15. Heck, R., and Gleicher, M. 2007. Parametric motion graphs. In Proceedings of the 2007 symposium on Interactive 3D graphics and games, 129--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. In Proceedings of SIGGRAPH 1995, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kovar, L., and Gleicher, M. 2004. Automated extraction and parameterization of motions in large data sets. ACM Transactions on Graphics (TOG) 23, 3, 559--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. In SIGGRAPH 2002 Conference Proceedings, 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kwon, T., and Hodgins, J. 2010. Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In SCA '10: Proceedings of the 2010 ACM SIGGRAPH/Eurographics symposium on Computer animation, 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. 2002. Interactive control of avatars animated with human motion data. ACM Transactions on Graphics 21, 3, 491--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lee, Y., Lee, S. J., and Popović, Z. 2009. Compact character controllers. ACM Transctions on Graphics 28, 5, Article 169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lee, Y., Wampler, K., Bernstein, G., Popović, J., and Popović, Z. 2010. Motion fields for interactive character locomotion. ACM Transctions on Graphics 29, 6, Article 138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lee, Y., Kim, S., and Lee, J. 2010. Data-driven biped control. ACM Transctions on Graphics 29, 4, Article 129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Liu, L., Yin, K., van de Panne, M., Shao, T., and Xu, W. 2010. Sampling-based contact-rich motion control. ACM Transactions on Graphics 29, 4, Article 128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. McCann, J., and Pollard, N. 2007. Responsive characters from motion fragments. ACM Transactions on Graphics 26, 3, Article 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Min, J., Chen, Y., and Chai, J. 2009. Interactive generation of human animation with deformable motion models. ACM Transactions on Graphics 29, 1, Article 9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mordatch, I., de Lasa, M., and Hertzmann, A. 2010. Robust physics-based locomotion using low-dimensional planning. ACM Trans. Graph. 29, 4, Article 71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph. 28, 3, Article 81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Muico, U., Popović, J., and Popović, Z. 2011. Composite control of physically simulated characters. ACM Trans. Graph. 30, 3, Article 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics (TOG) 23, 3, 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Trans. Graph. 26, 3, Article 107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Treuille, A., Lee, Y., and Popović, Z. 2007. Near-optimal character animation with continuous control. ACM Transactions on Graphics (TOG) 26, 3, Article 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wang, J. M., Fleet, D. J., and Hertzmann, A. 2009. Optimizing walking controllers. ACM Transctions on Graphics 28, 5, Article 168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wei, X., Min, J., and Chai, J. 2011. Physically valid statistical models for human motion generation. ACM Transctions on Graphics 30, 3, Article 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ye, Y., and Liu, C. K. 2010. Optimal feedback control for character animation using an abstract model. ACM Trans. Graph. 29, 4, Article 74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yin, K., Loken, K., and van de Panne, M. 2007. Simbicon: Simple biped locomotion control. ACM Transctions on Graphics 26, 3, Article 105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yin, K., Coros, S., Beaudoin, P., and van de Panne, M. 2008. Continuation methods for adapting simulated skills. ACM Transctions on Graphics 27, 3, Article 81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zhao, P., and van de Panne, M. 2005. User interfaces for interactive control of physics-based 3D characters. In ACM SIGGRAPH 2005 Symposium on Interactive 3D Graphics and Games, 87--94. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Terrain runner: control, parameterization, composition, and planning for highly dynamic motions

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 31, Issue 6
          November 2012
          794 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2366145
          Issue’s Table of Contents

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 November 2012
          Published in tog Volume 31, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader