skip to main content
research-article

Additive light field displays: realization of augmented reality with holographic optical elements

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

We propose a see-through additive light field display as a novel type of compressive light field display. We utilize holographic optical elements (HOEs) as transparent additive layers. The HOE layers are almost free from diffraction unlike spatial light modulator layers, which makes this additive light field display more advantageous when modifying the number of layers, thickness, and pixel density compared with conventional compressive displays. Meanwhile, the additive light field display maintains advantages of compressive light field displays. The proposed additive light field display shows bright and full-color volumetric images in high definition. In addition, users can view real-world scenes beyond the displays. Hence, we expect that our method can contribute to the realization of augmented reality. Here, we describe implementation of a prototype additive light field display with two additive layers, evaluate the performance of transparent HOE layers, describe several results of display experiments, discuss the diffraction effect of spatial light modulators, and analyze the ability of the additive light field display to express uncorrelated light fields.

Skip Supplemental Material Section

Supplemental Material

a60.mp4

mp4

190.1 MB

References

  1. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. (SIGGRAPH) 23, 804--813. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Andersen, A. H., and Kak, A. C. 1984. Simultaneous algebraic reconstruction technique (sart): a superior implementation of the art algorithm. Ultrasonic imaging 6, 1, 81--94.Google ScholarGoogle Scholar
  3. Azuma, R. T. 1997. A survey of augmented reality. Presence: Teleoperators and virtual environments 6, 4, 355--385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Close, D. H. 1975. Holographic optical elements. Opt. Eng. 14, 145402.Google ScholarGoogle ScholarCross RefCross Ref
  5. Coleman, T., and Li, Y. 1996. A reective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization 6, 4, 1040--1058. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Coufal, H. J., Sincerbox, G. T., and Psaltis, D. 2000. Holographic data storage. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hagbi, N., Bergig, O., El-Sana, J., and Billinghurst, M. 2011. Shape recognition and pose estimation for mobile augmented reality. Visualization and Computer Graphics, IEEE Transactions on 17, 10, 1369--1379. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hilliges, O., Kim, D., Izadi, S., Weiss, M., and Wilson, A. 2012. Holodesk: direct 3d interactions with a situated see-through display. In In Proceedings of the Conference on Human Factors in Computing Systems, ACM, 2421--2430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hirsch, M., Wetzstein, G., and Raskar, R. 2014. A compressive light field projection system. ACM Trans. Graph. (SIGGRAPH) 33, 4, 58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hong, S.-H., and Javidi, B. 2004. Improved resolution 3d object reconstruction using computational integral imaging with time multiplexing. Opt. Express 12, 19, 4579--4588.Google ScholarGoogle ScholarCross RefCross Ref
  11. Hong, J., Kim, Y., Park, S.-G., Hong, J.-H., Min, S.-W., Lee, S.-D., and Lee, B. 2010. 3d/2d convertible projection-type integral imaging using concave half mirror array. Opt. Express 18, 20, 20628--20637.Google ScholarGoogle ScholarCross RefCross Ref
  12. Hong, J., Min, S.-W., and Lee, B. 2012. Integral floating display systems for augmented reality. Appl. Opt. 51, 18, 4201--4209.Google ScholarGoogle ScholarCross RefCross Ref
  13. Hong, K., Yeom, J., Jang, C., Hong, J., and Lee, B. 2014. Full color lens-array holographic optical element for three-dimensional optical see-through augmented reality. Opt. Lett. 39, 1, 127--130.Google ScholarGoogle ScholarCross RefCross Ref
  14. Huang, F.-C., Chen, K., and Wetzstein, G. 2015. The light field stereoscope immersive computer graphics via factored near-eye light field displays with focus cues. ACM Trans. Graph. (SIGGRAPH) 34, 4, 60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Huang, Y.-T. 1994. Polarization-selective volume holograms: general design. Appl. Opt. 33, 11, 2115--2120.Google ScholarGoogle ScholarCross RefCross Ref
  16. Jang, C., Lee, C.-K., Jeong, J., Li, G., Lee, S., Yeom, J., Hong, K., and Lee, B. 2016. Recent progress in see-through three-dimensional displays using holographic optical elements. Appl. Opt. 55, 3, A71--A85.Google ScholarGoogle ScholarCross RefCross Ref
  17. Javidi, B., and Hua, H. 2014. A 3d integral imaging optical see-through headmounted display. Opt. Express 22, 11, 13484--13492.Google ScholarGoogle ScholarCross RefCross Ref
  18. Kasai, I., Tanijiri, Y., Endo, T., and Ueda, H. 2001. A practical see-through head mounted display using a holographic optical element. Opt. Rev 8, 4, 241--244.Google ScholarGoogle ScholarCross RefCross Ref
  19. Kaufmann, H., and Schmalstieg, D. 2003. Mathematics and geometry education with collaborative augmented reality. Computer & Graphics 27, 3, 339--345.Google ScholarGoogle ScholarCross RefCross Ref
  20. Kim, H.-J., Lee, S.-K., Piao, M.-L., Kim, N., and Park, J.-H. 2015. Three-dimensional holographic head mounted display using holographic optical element. IEEE International Conference on Consumer Electronics (ICCE), 132--133.Google ScholarGoogle Scholar
  21. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: optimizing dual-layer 3d displays using low-rank light field factorization. ACM Trans. Graph. (SIGGRAPH Asia) 29, 163:1--163:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: Dynamic light field display using multi-layer lcds. ACM Trans. Graph. (SIGGRAPH Asia) 30, 6, 186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lee, D. D., and Seung, S. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788--791.Google ScholarGoogle ScholarCross RefCross Ref
  24. Lee, S., Jang, C., Cho, J., Yeom, J., Jeong, J., and Lee, B. 2016. Viewing angle enhancement of an integral imaging display using bragg mismatched reconstruction of holographic optical elements. Appl. Opt. 55, 3, A95--A103.Google ScholarGoogle ScholarCross RefCross Ref
  25. Lee, B. 2013. Three-dimensional displays, past and present. Physics today 66, 4, 36--41.Google ScholarGoogle Scholar
  26. Li, G., Jeong, J., Lee, D., Yeom, J., Jang, C., Lee, S., and Lee, B. 2016. Space bandwidth product enhancement of holographic display using high-order diffraction guided by holographic optical element. Opt. Express 23, 26, 33170--33183.Google ScholarGoogle ScholarCross RefCross Ref
  27. Lippmann, G. 1908. Epreuves reversibles donnant la sensation du relief. j. phys 7, 4, 821--825.Google ScholarGoogle Scholar
  28. Liu, S., Cheng, D., and Hua, H. 2008. An optical see-through head mounted display with addressable focal planes. In Proc. ISMAR, 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Love, G. D., Hoffman, D. M., Hands, P. J., Gao, J., Kirby, A. K., and Banks, M. S. 2009. High-speed switchable lens enables the development of a volumetric stereoscopic display. Opt. Express 17, 18, 15716--15725.Google ScholarGoogle ScholarCross RefCross Ref
  30. Maimone, A., Lanman, D., Rathinavel, K., Keller, K., Luebke, D., and Fuchs, H. 2014. Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources. ACM Trans. Graph. (SIGGRAPH) 33, 4, 89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Narain, R., Albert, R. A., Bulbul, A., Ward, G. J., Banks, M. S., and O'Brien, J. F. 2015. Optimal presentation of imagery with focus cues on multi-plane displays. ACM Trans. Graph. (SIGGRAPH) 34, 4, 59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Olwal, A., Lindfors, C., Gustafsson, J., Kjellberg, T., and Mattsson, L. 2005. Astor: An autostereoscopic optical see-through augmented reality system. In Proc. ISMAR, 24--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Park, G., Jung, J.-H., Hong, K., Kim, Y., Kim, Y.-H., Min, S.-W., and Lee, B. 2009a. Multi-viewer tracking integral imaging system and its viewing zone analysis. Opt. Express 17, 20, 17895--17908.Google ScholarGoogle ScholarCross RefCross Ref
  34. Park, J.-H., Hong, K., and Lee, B. 2009b. Recent progress in three-dimensional information processing based on integral imaging. Appl. Opt. 48, 34, H77--H94.Google ScholarGoogle ScholarCross RefCross Ref
  35. Saleh, B. E., Teich, M. C., and Saleh, B. E. 2007. Fundamentals of photonics, vol. 22. Wiley New York.Google ScholarGoogle Scholar
  36. Sasaki, H., Yamamoto, K., Wakunami, K., Ichihashi, Y., Oi, R., and Senoh, T. 2014. Large size three-dimensional video by electronic holography using multiple spatial light modulators. Sci. Rep. 4, 6177.Google ScholarGoogle Scholar
  37. State, A., Livingston, M. A., Garret, W. F., Hirota, G., Whitron, M. C., Pisano, E. D., and Fuchs, H. 1996. Technologies for augmented-reality systems: Realizing ultrasound-guided needle biopsies. ACM Trans. Graph. (SIGGRAPH), 439--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Takaki, Y., and Nago, N. 2010. Multi-projection of lenticular displays to construct a 256-view super multi-view display. Opt. Express 18, 9, 8824--8835.Google ScholarGoogle ScholarCross RefCross Ref
  39. Takaki, Y., and Okada, N. 2009. Hologram generation by horizontal scanning of a high-speed spatial light modulator. Appl. Opt. 48, 17, 3255--3260.Google ScholarGoogle ScholarCross RefCross Ref
  40. Takaki, Y., and Yamaguchi, Y. 2015. Flat-panel see-through three-dimensional display based on integral imaging. Opt. Lett. 40, 8, 1873--1876.Google ScholarGoogle ScholarCross RefCross Ref
  41. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3d: Tomographic image synthesis for attenuation-based light eld and high dynamic range displays. ACM Trans. Graph. (SIGGRAPH) 30, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. (SIGGRAPH) 31, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Yeom, J., Jeong, J., Jang, C., Li, G., Hong, K., and Lee, B. 2015. Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element. Applied optics 54, 30, 8856--8862.Google ScholarGoogle Scholar

Index Terms

  1. Additive light field displays: realization of augmented reality with holographic optical elements

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 35, Issue 4
        July 2016
        1396 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2897824
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 July 2016
        Published in tog Volume 35, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader