skip to main content
research-article

Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays

Published:25 July 2011Publication History
Skip Abstract Section

Abstract

We develop tomographic techniques for image synthesis on displays composed of compact volumes of light-attenuating material. Such volumetric attenuators recreate a 4D light field or high-contrast 2D image when illuminated by a uniform backlight. Since arbitrary oblique views may be inconsistent with any single attenuator, iterative tomographic reconstruction minimizes the difference between the emitted and target light fields, subject to physical constraints on attenuation. As multi-layer generalizations of conventional parallax barriers, such displays are shown, both by theory and experiment, to exceed the performance of existing dual-layer architectures. For 3D display, spatial resolution, depth of field, and brightness are increased, compared to parallax barriers. For a plane at a fixed depth, our optimization also allows optimal construction of high dynamic range displays, confirming existing heuristics and providing the first extension to multiple, disjoint layers. We conclude by demonstrating the benefits and limitations of attenuation-based light field displays using an inexpensive fabrication method: separating multiple printed transparencies with acrylic sheets.

Skip Supplemental Material Section

Supplemental Material

tp101_11.mp4

mp4

37.7 MB

References

  1. Agocs, et al. 2006. A large scale interactive holographic display. In IEEE Virtual Reality, 311--312. Google ScholarGoogle Scholar
  2. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23, 804--813. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barnum, P. C., Narasimhan, S. G., and Kanade, T. 2010. A multi-layered display with water drops. ACM Trans. Graph. 29, 76:1--76:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bell, G. P., Craig, R., Paxton, R., Wong, G., and Galbraith, D. 2008. Beyond flat panels: Multi-layered displays with real depth. SID Digest 39, 1, 352--355.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bell, G. P., Engel, G. D., Searle, M. J., and Evanicky, D., 2010. Method to control point spread function of an image. U.S. Patent 7,742,239.Google ScholarGoogle Scholar
  6. Blanche, P.-A., et al. 2010. Holographic 3-d telepresence using large-area photorefractive polymer. Nature 468, 80--83.Google ScholarGoogle ScholarCross RefCross Ref
  7. Blundell, B., and Schwartz, A. 1999. Volumetric Three-Dimensional Display Systems. Wiley-IEEE Press. Google ScholarGoogle Scholar
  8. Bracewell, R. N., and Riddle, A. C. 1967. Inversion of fan-beam scans in radio astronomy. Astrophysical Journal 150, 427--434.Google ScholarGoogle ScholarCross RefCross Ref
  9. Chai, J.-X., Tong, X., Chan, S.-C., and Shum, H.-Y. 2000. Plenoptic sampling. In ACM SIGGRAPH, 307--318. Google ScholarGoogle Scholar
  10. Chaudhury, K. N., Muñoz-Barrutia, A., and Unser, M. 2010. Fast space-variant elliptical filtering using box splines. IEEE Trans. Image 19, 9, 2290--2306. Google ScholarGoogle ScholarCross RefCross Ref
  11. Coleman, T., and Li, Y. 1996. A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization 6, 4, 1040--1058. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., and Favalora, G. E. 2007. Occlusion-capable multiview volumetric three-dimensional display. Applied Optics 46, 8, 1244--1250.Google ScholarGoogle ScholarCross RefCross Ref
  13. Disney, W. E., 1940. Art of animation. U.S. Patent 2,201,689.Google ScholarGoogle Scholar
  14. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 62:1--62:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Drebin, R. A., Carpenter, L., and Hanrahan, P. 1988. Volume rendering. ACM SIGGRAPH 22, 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Favalora, G. E. 2005. Volumetric 3D displays and application infrastructure. IEEE Computer 38, 37--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Gotoda, H. 2010. A multilayer liquid crystal display for autostereoscopic 3D viewing. In SPIE-IS&T Stereoscopic Displays and Applications XXI, vol. 7524, 1--8.Google ScholarGoogle Scholar
  18. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29, 61:1--61:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hecht, E. 2001. Optics. Addison Wesley.Google ScholarGoogle Scholar
  20. Herman, G. T. 1995. Image reconstruction from projections. Real-Time Imaging 1, 1, 3--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ives, F. E., 1903. Parallax stereogram and process of making same. U.S. Patent 725,567.Google ScholarGoogle Scholar
  22. Jacobs, A., et al. 2003. 2D/3D switchable displays. Sharp Technical Journal, 4, 1--5.Google ScholarGoogle Scholar
  23. Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360° light field display. ACM Trans. Graph. 26, 40:1--40:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kak, A. C., and Slaney, M. 2001. Principles of Computerized Tomographic Imaging. Society for Industrial Mathematics. Google ScholarGoogle Scholar
  25. Kanolt, C. W., 1918. Photographic method and apparatus. U.S. Patent 1,260,682.Google ScholarGoogle Scholar
  26. Klug, M., Holzbach, M., and Ferdman, A., 2001. Method and apparatus for recording one-step, full-color, full-parallax, holographic stereograms. U.S. Patent 6,330,088.Google ScholarGoogle Scholar
  27. Kooi, F. L., and Toet, A. 2003. Additive and subtractive transparent depth displays. In SPIE Enhanced and Synthetic Vision, vol. 5081, 58--65.Google ScholarGoogle Scholar
  28. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization. ACM Trans. Graph. 29, 163:1--163:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Levoy, M., and Hanrahan, P. 1996. Light Field Rendering. In ACM SGGRAPH, 31--42. Google ScholarGoogle Scholar
  30. Lippmann, G. 1908. Épreuves réversibles donnant la sensation du relief. Journal of Physics 7, 4, 821--825.Google ScholarGoogle Scholar
  31. Lipton, L. 1982. Foundations of the Stereoscopic Cinema. Van Nostrand Reinhold.Google ScholarGoogle Scholar
  32. Loukianitsa, A., and Putilin, A. N. 2002. Stereodisplay with neural network image processing. In SPIE-IT&T Stereoscopic Displays and Virtual Reality Systems IX, vol. 4660, 207--211.Google ScholarGoogle ScholarCross RefCross Ref
  33. Maeda, H., Hirose, K., Yamashita, J., Hirota, K., and Hirose, M. 2003. All-around display for video avatar in real world. In IEEE/ACM ISMAR, 288--289. Google ScholarGoogle Scholar
  34. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Trans. Graph. 28, 128:1--128:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Mitra, N. J., and Pauly, M. 2009. Shadow art. ACM Trans. Graph. 28, 156:1--156:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Nayar, S., and Anand, V. 2007. 3D display using passive optical scatterers. IEEE Computer Magazine 40, 7, 54--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Perlin, K., and Han, J. Y., 2006. Volumetric display with dust as the participating medium. U.S. Patent 6,997,558.Google ScholarGoogle Scholar
  38. Putilin, A. N., and Loukianitsa, A., 2006. Visualization of three dimensional images and multi aspect imaging. U.S. Patent 6,985,290.Google ScholarGoogle Scholar
  39. Reinhard, E., Ward, G., Debevec, P., Pattanaik, S., Heidrich, W., and Myszkowski, K. 2010. High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann.Google ScholarGoogle Scholar
  40. Sabella, P. 1988. A rendering algorithm for visualizing 3D scalar fields. ACM SIGGRAPH 22, 51--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Sagi, O., 2009. PolyJet Matrix Technology: A new direction in 3D printing. http://www.objet.com, June.Google ScholarGoogle Scholar
  42. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High dynamic range display systems. ACM Trans. Graph. 23, 3, 760--768. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Slinger, C., Cameron, C., and Stanley, M. 2005. Computer-generated holography as a generic display technology. Computer 38, 8, 46--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Sullivan, A. 2003. A solid-state multi-planar volumetric display. In SID Digest, vol. 32, 207--211.Google ScholarGoogle Scholar
  45. Suyama, S., Ohtsuka, S., Takada, H., Uehira, K., and Sakai, S. 2004. Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths. Vision Research 44, 8, 785--793.Google ScholarGoogle ScholarCross RefCross Ref
  46. Yendo, T., Kawakami, N., and Tachi, S. 2005. Seelinder: the cylindrical lightfield display. In ACM SIGGRAPH Emerging Technologies. Google ScholarGoogle Scholar
  47. Z Corporation, 2010. ZPrinter 650. http://www.zcorp.com, January.Google ScholarGoogle Scholar
  48. Zwicker, M., Matusik, W., Durand, F., and Pfister, H. 2006. Antialiasing for automultiscopic 3D displays. In Eurographics Symposium on Rendering. Google ScholarGoogle Scholar

Index Terms

  1. Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 30, Issue 4
            July 2011
            829 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2010324
            Issue’s Table of Contents

            Copyright © 2011 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 25 July 2011
            Published in tog Volume 30, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader