skip to main content
10.1145/2984511.2984549acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

JOLED: A Mid-air Display based on Electrostatic Rotation of Levitated Janus Objects

Published:16 October 2016Publication History

ABSTRACT

We present JOLED, a mid-air display for interactive physical visualization using Janus objects as physical voxels. The Janus objects have special surfaces that have two or more asymmetric physical properties at different areas. In JOLED, they are levitated in mid-air and controllably rotated to reveal their different physical properties. We made voxels by coating the hemispheres of expanded polystyrene beads with different materials, and applied a thin patch of titanium dioxide to induce electrostatic charge on them. Transparent indium tin oxide electrodes are used around the levitation volume to create a tailored electric field to control the orientation of the voxels. We propose a novel method to control the angular position of individual voxels in a grid using electrostatic rotation and their 3D position using acoustic levitation. We present a display in which voxels can be flipped independently, and two mid-air physical games with a voxel as the playable character that moves in 3D across other physical structures and rotates to reflect its status in the games. We demonstrate a voxel update speed of 37.8 ms/flip, which is video-rate.

Skip Supplemental Material Section

Supplemental Material

uist3084-file3.mp4

mp4

80.3 MB

p437-sahoo.mp4

mp4

250.5 MB

References

  1. Sankyo International, Reed relay. http://www.sankyointernational.co.jp/ denshibuhin/reed_relay/02.html.Google ScholarGoogle Scholar
  2. 9613--1:1993, I. Acoustics -- attenuation of sound during propagation outdoors -- part 1: Calculation of the absorption of sound by the atmosphere, 2015.Google ScholarGoogle Scholar
  3. 9613--2:1996, I. Acoustics -- attenuation of sound during propagation outdoors -- part 2: General method of calculation, 2012.Google ScholarGoogle Scholar
  4. Barnum, P. C., Narasimhan, S. G., and Kanade, T. A multi-layered display with water drops. ACM Trans. Graph. 29, 4 (July 2010), 76:1--76:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Demierre, N., Braschler, T., Linderholm, P., Seger, U., van Lintel, H., and Renaud, P. Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab Chip 7 (2007), 355--365. Google ScholarGoogle ScholarCross RefCross Ref
  6. Eitoku, S., Tanikawa, T., and Suzuki, Y. Display composed of water drops for filling space with materialized virtual three-dimensional objects. In Virtual Reality Conference, 2006 (March 2006), 159--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Foresti, D., Nabavi, M., Klingauf, M., Ferrari, A., and Poulikakos, D. Acoustophoretic contactless transport and handling of matter in air. Proceedings of the National Academy of Sciences 110, 31 (2013), 12549--12554. Google ScholarGoogle ScholarCross RefCross Ref
  8. Grossman, T., and Wigdor, D. Going deeper: a taxonomy of 3d on the tabletop. In Horizontal Interactive Human-Computer Systems, 2007. TABLETOP '07. Second Annual IEEE International Workshop on (Oct 2007), 137--144.Google ScholarGoogle ScholarCross RefCross Ref
  9. Hilliges, O., Kim, D., Izadi, S., Weiss, M., and Wilson, A. Holodesk: Direct 3d interactions with a situated see-through display. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '12, ACM (New York, NY, USA, 2012), 2421--2430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hong, J., Yoon, D. S., Kim, S. K., Kim, T. S., Kim, S., Pak, E. Y., and No, K. Ac frequency characteristics of coplanar impedance sensors as design parameters. Lab Chip 5 (2005), 270--279. Google ScholarGoogle ScholarCross RefCross Ref
  11. Howard, M. E., Richley, E. A., Sprague, R., and Sheridon, N. K. Gyricon electric paper. Journal of the Society for Information Display 6, 4 (1998), 215--217. Google ScholarGoogle ScholarCross RefCross Ref
  12. Jansen, Y., Dragicevic, P., Isenberg, P., Alexander, J., Karnik, A., Kildal, J., Subramanian, S., and Hornbæk, K. Opportunities and challenges for data physicalization. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI '15, ACM (New York, NY, USA, 2015), 3227--3236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kimura, H., Asano, A., Fujishiro, I., Nakatani, A., and Watanabe, H. True 3d display. In ACM SIGGRAPH 2011 Emerging Technologies, SIGGRAPH '11, ACM (New York, NY, USA, 2011), 20:1--20:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lawton, B. W. Damage to human hearing by airborne sound of very high frequency or ultrasonic frequency, 2001.Google ScholarGoogle Scholar
  15. Lee, C., DiVerdi, S., and Hollerer, T. Depth-fused 3d imagery on an immaterial display. IEEE Transactions on Visualization and Computer Graphics 15, 1 (Jan 2009), 20--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lee, J., Post, R., and Ishii, H. Zeron: Mid-air tangible interaction enabled by computer controlled magnetic levitation. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST '11, ACM (New York, NY, USA, 2011), 327--336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Long, B., Seah, S. A., Carter, T., and Subramanian, S. Rendering volumetric haptic shapes in mid-air using ultrasound. ACM Transactions on Graphics (TOG) 33, 6 (2014), 181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Martinez Plasencia, D., Joyce, E., and Subramanian, S. Mistable: Reach-through personal screens for tabletops. In Proceedings of the 32Nd Annual ACM Conference on Human Factors in Computing Systems, CHI '14, ACM (New York, NY, USA, 2014), 3493--3502. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Marzo, A., Seah, S. A., Drinkwater, B. W., Sahoo, D. R., Long, B., and Subramanian, S. Holographic acoustic elements for manipulation of levitated objects. Nature Communications 6, 8661 (October 2015). Google ScholarGoogle ScholarCross RefCross Ref
  20. Matoba, Y., Tokui, T., Sato, R., Sato, T., and Koike, H. Splashdisplay. In Proceedings of the 2012 Virtual Reality International Conference, VRIC '12, ACM (New York, NY, USA, 2012), 27:1--27:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Nakamura, M., Inaba, G., Tamaoki, J., Shiratori, K., and Hoshino, J. Mounting and application of bubble display system: Bubble cosmos. In Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, ACE '06, ACM (New York, NY, USA, 2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nash, S. G., and Nocedal, J. A numerical study of the limited memory bfgs method and the truncated-newton method for large scale optimization. SIAM Journal on Optimization 1, 3 (1991), 358--372. Google ScholarGoogle ScholarCross RefCross Ref
  23. NIST. EEEL Safety rules for moderate and high voltages, 2008.Google ScholarGoogle Scholar
  24. Ochiai, Y., Hoshi, T., and Rekimoto, J. Pixie dust: Graphics generated by levitated and animated objects in computational acoustic-potential field. ACM Trans. Graph. 33, 4 (July 2014), 85:1--85:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ochiai, Y., Kumagai, K., Hoshi, T., Rekimoto, J., Hasegawa, S., and Hayasaki, Y. Fairy lights in femtoseconds: Aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields. ACM Trans. Graph. 35, 2 (Feb. 2016), 17:1--17:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ochiai, Y., Oyama, A., Hoshi, T., and Rekimoto, J. Poppable display: A display that enables popping, breaking, and tearing interactions with people. In Consumer Electronics (GCCE), 2013 IEEE 2nd Global Conference on (Oct 2013), 124--128. Google ScholarGoogle ScholarCross RefCross Ref
  27. Omirou, T., Marzo, A., Seah, S. A., and Subramanian, S. Levipath: Modular acoustic levitation for 3d path visualisations. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI '15, ACM (New York, NY, USA, 2015), 309--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Omirou, T., Marzo, A., Subramanian, S., and Roudaut, A. Floating charts: Data plotting using free-floating acoustically levitated representations. In 3D User Interfaces (3DUI), 2016 IEEE Symposium on (March 2016), 1--4.Google ScholarGoogle Scholar
  29. Perlin, K., and Han, J. Y. Volumetric display with dust as the participating medium. Retrieved from US Patent 6,997,558, Feb 2006.Google ScholarGoogle Scholar
  30. Rakkolainen, I. How feasible are star wars mid-air displays. In Information Visualization, 2007. IV '07. 11th International Conference (July 2007), 935--942. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sahoo, D. R., Martinez Plasencia, D., and Subramanian, S. Control of non-solid diffusers by electrostatic charging. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI '15, ACM (New York, NY, USA, 2015), 11--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Saito, H., Kimura, H., Shimada, S., Naemura, T., Kayahara, J., Jarusirisawad, S., Nozick, V., Ishikawa, H., Murakami, T., Aoki, J., Asano, A., Kimura, T., Kakehata, M., Sasaki, F., Yashiro, H., Mori, M., Torizuka, K., and Ino, K. Laser-plasma scanning 3d display for putting digital contents in free space. vol. 6803 (2008), 680309-680309'10.Google ScholarGoogle Scholar
  33. Seah, S. A., Martinez Plasencia, D., Bennett, P. D., Karnik, A., Otrocol, V. S., Knibbe, J., Cockburn, A., and Subramanian, S. Sensabubble: A chrono-sensory mid-air display of sight and smell. In Proceedings of the 32Nd Annual ACM Conference on Human Factors in Computing Systems, CHI '14, ACM (New York, NY, USA, 2014), 2863--2872. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Tokuda, Y., Hiyama, A., Hirose, M., and Yamamoto, H. R2d2 w/ airr: Real time & real space double-layered display with aerial imaging by retro-reflection. In SIGGRAPH Asia 2015 Emerging Technologies, SA '15, ACM (New York, NY, USA, 2015), 20:1--20:3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Whymark, R. Acoustic field positioning for containerless processing. Ultrasonics 13, 6 (1975), 251--261. Google ScholarGoogle ScholarCross RefCross Ref
  36. Xiang, Y. The electrostatic capacitance of an inclined plate capacitor. Journal of Electrostatics 64, 1 (2006), 29--34. Google ScholarGoogle ScholarCross RefCross Ref
  37. Xiang, Y. Further study on electrostatic capacitance of an inclined plate capacitor. Journal of Electrostatics 66, 78 (2008), 366--368. Google ScholarGoogle ScholarCross RefCross Ref
  38. Yagi, A., Imura, M., Kuroda, Y., and Oshiro, O. 360degreee fog projection interactive display. In SIGGRAPH Asia 2011 Emerging Technologies, SA '11, ACM (New York, NY, USA, 2011), 19:1--19:1. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. JOLED: A Mid-air Display based on Electrostatic Rotation of Levitated Janus Objects

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader