skip to main content
research-article

Scattering-aware texture reproduction for 3D printing

Published:20 November 2017Publication History
Skip Abstract Section

Abstract

Color texture reproduction in 3D printing commonly ignores volumetric light transport (cross-talk) between surface points on a 3D print. Such light diffusion leads to significant blur of details and color bleeding, and is particularly severe for highly translucent resin-based print materials. Given their widely varying scattering properties, this cross-talk between surface points strongly depends on the internal structure of the volume surrounding each surface point. Existing scattering-aware methods use simplified models for light difusion, and often accept the visual blur as an immutable property of the print medium. In contrast, our work counteracts heterogeneous scattering to obtain the impression of a crisp albedo texture on top of the 3D print, by optimizing for a fully volumetric material distribution that preserves the target appearance. Our method employs an efficient numerical optimizer on top of a general Monte-Carlo simulation of heterogeneous scattering, supported by a practical calibration procedure to obtain scattering parameters from a given set of printer materials. Despite the inherent translucency of the medium, we reproduce detailed surface textures on 3D prints. We evaluate our system using a commercial, five-tone 3D print process and compare against the printer's native color texturing mode, demonstrating that our method preserves high-frequency features well without having to compromise on color gamut.

Skip Supplemental Material Section

Supplemental Material

References

  1. Vahid Babaei and Roger D. Hersch. 2016. N-ink printer characterization with barycentric subdivision. IEEE Transactions on Image Processing 25, 7 (2016).Google ScholarGoogle ScholarCross RefCross Ref
  2. Vahid Babaei, Kiril Vidimče, Michael Foshey, Alexandre Kaspar, Piotr Didyk, and Wojciech Matusik. 2017. Color contoning for 3D printing. ACM Transactions on Graphics (Proc. SIGGRAPH) 36 (2017). Issue to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Alan Brunton, Can Ates Arikan, and Philipp Urban. 2015. Pushing the limits of 3D color printing: error diffusion with translucent materials. ACM Transactions on Graphics 35, 1 (December 2015), 4:1--4:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Desai Chen, David I. W. Levin, Piotr Didyk, Pitchaya Sitthi-Amorn, and Wojciech Matusik. 2013. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM Transactions on Graphics (Proc. SIGGRAPH) 32, 4 (2013), 135:1--135:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Per H. Christensen. 2015. An approximate reflectance profile for efficient subsurface scattering. In ACM SIGGRAPH Talks. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Paolo Cignoni, Enrico Gobbetti, Ruggero Pintus, and Roberto Scopigno. 2008. Color enhancement for rapid prototyping. In Proc. of International Symposium on Virtual Reality, Archaeology and Cultural Heritage. Eurographics, 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Eugene d'Eon and Geoffrey Irving. 2011. A Quantized-diffusion Model for Rendering Translucent Materials. ACM Transactions on Graphics (Proc. SIGGRAPH) 30, 4 (July 2011), 56:1--56:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Yue Dong, Jiaping Wang, Fabio Pellacini, Xin Tong, and Baining Guo. 2010. Fabricating spatially-varying subsurface scattering. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4 (2010), 62:1--62:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Craig Donner, Tim Weyrich, Eugene d'Eon, Ravi Ramamoorthi, and Szymon Rusinkiewicz. 2008. A layered, heterogeneous reflectance model for acquiring and rendering human skin. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 27 (2008), 140:1--140:12. Issue 5. htps:// Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. E. L. Doubrovski, Elizabeth Yinling Tsai, Daniel Dikovsky, Jo M. P. Geraedts, Hugh Herr, and Neri Oxman. 2015. Voxel-based fabrication through material property mapping: A design method for bitmap printing. Computer-Aided Design 60 (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Roland W. Fleming and Heinrich H. Bülthoff. 2005. Low-level image cues in the perception of translucent materials. ACM Trans. Appl. Percept. 2, 3 (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Roland W. Fleming, Henrik Wann Jensen, and Heinrich H Bülthoff. 2004. Perceiving translucent materials. In Proc. of ACM Symposium on Applied Perception in Graphics and Visualization. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ioannis Gkioulekas, Bei Xiao, Shuang Zhao, Edward Adelson, Todd Zickler, and Kavita Bala. 2013a. Understanding the role of phase function in translucent appearance. ACM Transactions on Graphics 32, 5 (2013), 147:1--147:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013b. Inverse volume rendering with material dictionaries. ACM Transactions on Graphics 32, 6 (2013), 162:1--162:13. htps:// Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ralf Habel, Per H. Christensen, and Wojciech Jarosz. 2013. Photon beam diffusion: A hybrid Monte Carlo method for subsurface scattering. In Proc. of EGSR. 27--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Miloš Hašan, Martin Fuchs, Wojciech Matusik, Hanspeter Pfister, and Szymon Rusinkiewicz. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 3 (2010), 61:1--61:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Miloš Hašan and Ravi Ramamoorthi. 2013. Interactive albedo editing in path-traced volumetric materials. ACM Transactions on Graphics 32, 2 (2013), 11:1--11:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Wenzel Jakob. 2010. Mitsuba renderer. (2010). http://www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  19. Henrik Wann Jensen and Juan Buhler. 2002. A rapid hierarchical rendering technique for translucent materials. ACM Transactions on Graphics (Proc. SIGGRAPH) 21, 3 (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. 2001. A practical model for subsurface light transport. In Proc. SIGGRAPH.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Konrad, B. Lacotte, and E. Dubois. 2000. Cancellation of image crosstalk in time-sequential displays of stereoscopic video. IEEE Trans. Image Processing 9, 5 (2000). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Yanxiang Lan, Yue Dong, Fabio Pellacini, and Xin Tong. 2013. Bi-scale appearance fabrication. ACM Transactions on Graphics 32, 4 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Qun Lou and Peter Stucki. 1998. Fundamentals of 3D halftoning. In Electronic Publishing, Artistic Imaging, and Digital Typography, RogerD. Hersch, Jacques André, and Heather Brown (Eds.). Vol. 1375. Springer Berlin Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Wojciech Matusik, Boris Ajdin, Jinwei Gu, Jason Lawrence, Hendrik P.A. Lensch, Fabio Pellacini, and Szymon Rusinkiewicz. 2009. Printing spatially-varying reflectance. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 28, 5 (2009), 40:1--40:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Carlos Montalto, Ignacio Garcia-Dorado, Daniel Aliaga, Manuel M. Oliveira, and Feng Meng. 2015. A total variation approach for customizing imagery to improve visual acuity. ACM Transactions on Graphics 34, 3, Article 28 (May 2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Marios Papas, Christian Regg, Wojciech Jarosz, Bernd Bickel, Philip Jackson, Wojciech Matusik, Steve Marschner, and Markus Gross. 2013. Fabricating translucent materials using continuous pigment mixtures. ACM Transactions on Graphics (Proc. SIGGRAPH) 32, 4 (July 2013), 146:1--146:12. htps:// Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From theory to implementation (3rd ed.). Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Pintus, E. Gobbetti, P Cignoni, and R. Scopigno. 2010. Shape enhancement for rapid prototyping. The Visual Computer 26, 6--8 (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tim Reiner, Nathan Carr, Radomír Měch, Ondřej Št'áva, Carsten Dachsbacher, and Gavin Miller. 2014. Dual-color mixing for fused deposition modeling printers. Computer Graphics Forum (Proc. of Eurographics) 33, 2 (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. O. Rouiller, B. Bickel, J. Kautz, W. Matusik, and M. Alexa. 2013. 3D-printing spatially varying BRDFs. IEEE Computer Graphics and Applications 33, 6 (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Thorsten-Walther Schmidt, Fabio Pellacini, Derek Nowrouzezahrai, Wojciech Jarosz, and Carsten Dachsbacher. 2014. State of the art in artistic editing of appearance, lighting, and material. In Eurographics 2014 - State of the Art Reports.Google ScholarGoogle Scholar
  32. Pitchaya Sitthi-Amorn, Javier E. Ramos, Yuwang Wangy, Joyce Kwan, Justin Lan, Wenshou Wang, and Wojciech Matusik. 2015. MultiFab: A Machine Vision Assisted Platform for Multi-material 3D Printing. ACM Transactions on Graphics 34, 4 (July 2015), 129:1--129:11. htps:// Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Hiroki Sone, Toshiya Hachisuka, and Takafumi Koike. 2017. Parameter estimation of BSSRDF for heterogeneous materials. In Eurographics Short Papers.Google ScholarGoogle Scholar
  34. Ying Song, Xin Tong, Fabio Pellacini, and Pieter Peers. 2009. SubEdit: A Representation for Editing Measured Heterogeneous Subsurface Scattering. ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 3 (July 2009), 31:1--31:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Y. Song and W. Wang. 2013. A data-driven model for anisotropic heterogeneous subsurface scattering. In Proc. of Signal and Information Processing Association Annual Summit and Conference.Google ScholarGoogle Scholar
  36. Eric J. Stollnitz, Victor Ostromoukhov, and David H. Salesin. 1998. Reproducing Color Images Using Custom Inks. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '98). ACM, New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Stratasys. 2017. J750 Printer. (2017). http://www.stratasys.com/3d-printers/production-series/stratasys-j750.Google ScholarGoogle Scholar
  38. Jeroen van Baar, Steven Poulakos, Wojciech Jarosz, Derek Nowrouzezahrai, Rasmus Tamstorf, and Markus Gross. 2011. Perceptually-based compensation of light pollution in display systems. In Proc. of ACM Symposium on Applied Perception in Graphics and Visualization. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Kiril Vidimče, Szu-Po Wang, Jonathan Ragan-Kelley, and Wojciech Matusik. 2013. OpenFab: a programmable pipeline for multi-material fabrication. ACM Transactions on Graphics 32, 4 (July 2013). htps:// Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Rui Wang, Ewen Cheslack-Postava, Rui Wang, David Luebke, Qianyong Chen, Wei Hua, Qunsheng Peng, and Hujun Bao. 2008. Real-time editing and relighting of homogeneous translucent materials. The Visual Computer 24 (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13, 4 (2004), 600--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Tim Weyrich, Pieter Peers, Wojciech Matusik, and Szymon Rusinkiewicz. 2009. Fabricating microgeometry for custom surface reflectance. ACM Transactions on Graphics (Proc. SIGGRAPH) 28 (2009), 32:1--32:6. htps:// Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Douglas R. Wyman, Michael S. Patterson, and Brian C. Wilson. 1989. Similarity relations for the interaction parameters in radiation transport. Applied Optics 28, 24 (1989).Google ScholarGoogle Scholar
  44. Kun Xu, Yue Gao, Yong Li, Tao Ju, and Shi-Min Hu. 2007. Real-time homogenous translucent material editing. Computer Graphics Forum 26, 3 (2007).Google ScholarGoogle Scholar
  45. Shuang Zhao, Ravi Ramamoorthi, and Kavita Bala. 2014. High-order Similarity Relations in Radiative Transfer. ACM Transactions on Graphics 33, 4 (July 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Scattering-aware texture reproduction for 3D printing

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 36, Issue 6
          December 2017
          973 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3130800
          Issue’s Table of Contents

          Copyright © 2017 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 20 November 2017
          Published in tog Volume 36, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader