skip to main content
research-article

Path problems in temporal graphs

Published:01 May 2014Publication History
Skip Abstract Section

Abstract

Shortest path is a fundamental graph problem with numerous applications. However, the concept of classic shortest path is insufficient or even flawed in a temporal graph, as the temporal information determines the order of activities along any path. In this paper, we show the shortcomings of classic shortest path in a temporal graph, and study various concepts of "shortest" path for temporal graphs. Computing these temporal paths is challenging as subpaths of a "shortest" path may not be "shortest" in a temporal graph. We investigate properties of the temporal paths and propose efficient algorithms to compute them. We tested our algorithms on real world temporal graphs to verify their efficiency, and also show that temporal paths are essential for studying temporal graphs by comparing shortest paths in normal static graphs.

References

  1. A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed Systems, 27(5):387--408, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. Cheng, S. Huang, H. Wu, and A. W.-C. Fu. Tf-label: a topological-folding labeling scheme for reachability querying in a large graph. In SIGMOD Conference, pages 193--204, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. J. Cheng, Y. Ke, S. Chu, and C. Cheng. Efficient processing of distance queries in large graphs: a vertex cover approach. In SIGMOD Conference, pages 457--468, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Cheng, Z. Shang, H. Cheng, H. Wang, and J. X. Yu. K-reach: Who is in your small world. PVLDB, 5(11):1292--1303, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Cheng, Z. Shang, H. Cheng, H. Wang, and J. X. Yu. Efficient processing of k-hop reachability queries. VLDB J., 23(2):227--252, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  6. D. Eppstein and J. Wang. Fast approximation of centrality. In SODA, pages 228--229, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. W.-C. Fu, H. Wu, J. Cheng, and R. C.-W. Wong. Is-label: an independent-set based labeling scheme for point-to-point distance querying. PVLDB, 6(6):457--468, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. P. Holme and J. Saramäki. Temporal networks. CoRR, abs/1108.1780, 2011.Google ScholarGoogle Scholar
  9. S. Huang, J. Cheng, and H. Wu. Temporal graph traversals: Definitions, algorithms, and applications. CoRR, abs/1401.1919, 2014.Google ScholarGoogle Scholar
  10. D. Kempe, J. M. Kleinberg, and A. Kumar. Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci., 64(4):820--842, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. G. Kossinets, J. M. Kleinberg, and D. J. Watts. The structure of information pathways in a social communication network. In KDD, pages 435--443, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. V. Kostakos. Temporal graphs. Physica A: Statistical Mechanics and its Applications, 388(6):1007--1023, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  13. V. Nicosia, J. Tang, M. Musolesi, G. Russo, C. Mascolo, and V. Latora. Components in time-varying graphs. CoRR, abs/1106.2134, 2011.Google ScholarGoogle Scholar
  14. R. K. Pan and J. Saramäki. Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E, 84: 016105, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  15. N. Santoro, W. Quattrociocchi, P. Flocchini, A. Casteigts, and F. Amblard. Time-varying graphs and social network analysis: Temporal indicators and metrics. CoRR, abs/1102.0629, 2011.Google ScholarGoogle Scholar
  16. J. Tang, M. Musolesi, C. Mascolo, and V. Latora. Temporal distance metrics for social network analysis. In Proceedings of the ACM Workshop on Online Social Networks, pages 31--36, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Tang, M. Musolesi, C. Mascolo, and V. Latora. Characterising temporal distance and reachability in mobile and online social networks. Computer Communication Review, 40(1):118--124, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Tang, S. Scellato, M. Musolesi, C. Mascolo, and V. Latora. Small-world behavior in time-varying graphs. Physical Review E, 81(5):055101, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  19. H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu. Path problems in temporal graphs (preliminary version). www.cse.cuhk.edu.hk/~hhwu/temsp.pdf, 2013.Google ScholarGoogle Scholar
  20. L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and J. Sun. Temporal recommendation on graphs via long- and short-term preference fusion. In KDD, pages 723--732, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. B.-M. B. Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci., 14(2):267--285, 2003.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 7, Issue 9
    May 2014
    124 pages
    ISSN:2150-8097
    Issue’s Table of Contents

    Publisher

    VLDB Endowment

    Publication History

    • Published: 1 May 2014
    Published in pvldb Volume 7, Issue 9

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader