skip to main content
research-article

A compressive light field projection system

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

For about a century, researchers and experimentalists have strived to bring glasses-free 3D experiences to the big screen. Much progress has been made and light field projection systems are now commercially available. Unfortunately, available display systems usually employ dozens of devices making such setups costly, energy inefficient, and bulky. We present a compressive approach to light field synthesis with projection devices. For this purpose, we propose a novel, passive screen design that is inspired by angle-expanding Keplerian telescopes. Combined with high-speed light field projection and nonnegative light field factorization, we demonstrate that compressive light field projection is possible with a single device. We build a prototype light field projector and angle-expanding screen from scratch, evaluate the system in simulation, present a variety of results, and demonstrate that the projector can alternatively achieve super-resolved and high dynamic range 2D image display when used with a conventional screen.

Skip Supplemental Material Section

Supplemental Material

References

  1. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A Stereo Display Prototype with Multiple Focal Distances. ACM Trans. Graph. (SIGGRAPH) 23, 804--813. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Balogh, T. 2006. The HoloVizio System. In Proc. SPIE 6055, vol. 60550U. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Berthouzoz, F., and Fattal, R. 2012. Resolution Enhancement by Vibrating Displays. ACM Trans. Graph. 31, 2, 15:1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bogaert, L., Meuret, Y., Roelandt, S., Avci, A., Smet, H. D., and Thienpont, H. 2010. Single Projector Multiview Displays: Directional Illumination Compared to Beam Steering. In Proc. SPIE 7524, vol. 75241R. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cichocki, A., Zdunek, R., Phan, A. H., and ichi Amari, S. 2009. Nonnegative Matrix and Tensor Factorizations. Wiley. Google ScholarGoogle Scholar
  6. Cossairt, O., and Favalora, G., 2006. Minimized-Thickness Angular Scanner of Electromagnetic Radiation, Apr. 26. US Patent App. 11/380,296.Google ScholarGoogle Scholar
  7. Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., and Favalora, G. E. 2007. Occlusion-Capable Multiview Volumetric Three-Dimensional Display. Applied Optics 46, 8, 1244--1250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Damera-Venkata, N., and Chang, N. L. 2009. Display Supersampling. ACM Trans. Graph. 28, 1, 9:1--9:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dodgson, N. A., Moore, J. R., Lang, S. R., Martin, G., and Canepa, P. 2000. A time-sequential multi-projector autostereoscopic display. Journal of the SID 8, 2, 169--176.Google ScholarGoogle Scholar
  10. Eichenlaub, J. B. 2005. Optical System Which Projects Small Volumetric Images to Very Large Size. In Electronic Imaging 2005, International Society for Optics and Photonics, 313--322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Funk, W. 2012. History of Autostereoscopic Cinema. In Proc. SPIE 8288, vol. 82880R.Google ScholarGoogle ScholarCross RefCross Ref
  12. Gabor, D., 1944. Optical System Composed of Lenticules, June 13. US Patent 2,351,034. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Grosse, M., Wetzstein, G., Grundhöfer, A., and Bimber, O. 2010. Coded Aperture Projection. ACM Trans. Graph. 29, 22:1--22:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hecht, E. 2002. Optics, fourth edition. Addison Wesley.Google ScholarGoogle Scholar
  15. Heide, F., Wetzstein, G., Raskar, R., and Heidrich, W. 2013. Adaptive Image Synthesis for Compressive Displays. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4, 132:1--132:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Heide, F., Gregson, J., Wetzstein, G., Raskar, R., and Heidrich, W. 2014. A Compressive Multi-Mode Superresolution Display. ArXiv e-prints (Apr.).Google ScholarGoogle Scholar
  17. Hembd-Sölner, C., Stevens, R. F., and Hutley, M. C. 1999. Imaging Properties of the Gabor Superlens. Journal of Optics A: Pure and Applied Optics 1, 1, 94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hong, J., Kim, Y., Park, S.-G., Hong, J.-H., Min, S.-W., Lee, S.-D., and Lee, B. 2010. 3D/2D Convertible Projection-type Integral Imaging using Concave Half Mirror Array. Optics Express 18.Google ScholarGoogle Scholar
  19. Hsu, F.-H., 2008. Three-Dimensional (3D) Image Projection. US patent 7425070 B2.Google ScholarGoogle Scholar
  20. Ives, H., 1903. Parallax Stereogram and Process of Making Same. US patent 725,567.Google ScholarGoogle Scholar
  21. Ives, H. 1928. Camera for Making Parallax Panoramagrams. J. Opt. Soc. Amer. 17, 435--439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jacobs, A., Mather, J., Winlow, R., Montgomery, D., Jones, G., Willis, M., Tillin, M., Hill, L., Khazova, M., Stevenson, H., and Bourhill, G. 2003. 2D/3D switchable displays. Sharp Technical Journal, 4, 15--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an Interactive 360° Light Field Display. ACM Trans. Graph. (SIGGRAPH) 26, 40:1--40:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jones, A., Liu, J., Busch, J., Debevec, P., Bolas, M., and Yu, X., 2013. An Autostereoscopic Projector Array Optimized for 3D Facial Display. SIGGRAPH Emerging Technologies. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jurik, J., Jones, A., Bolas, M., and Debevec, P. 2011. Prototyping a Light Field Display Involving Direct Observation of a Video Projector Array. In Proc. ProCams, IEEE.Google ScholarGoogle Scholar
  26. Kim, Y., Hong, K., Yeom, J., Hong, J., Jung, J.-H., Lee, Y. W., Park, J.-H., and Lee, B. 2012. A Frontal Projection-type Three-dimensional Display. Optics Express 20.Google ScholarGoogle Scholar
  27. Kimura, H., Uchiyama, T., and Yoshikawa, H. 2006. Laser Produced 3D Display in the Air. In SIGGRAPH Emerging Technologies, ACM, 20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-Adaptive Parallax Barriers: Optimizing Dual-Layer 3D Displays using Low-Rank Light Field Factorization. ACM Trans. Graph. (SIGGRAPH Asia) 28, 5, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization Fields: Dynamic Light Field Display Using Multi-Layer LCDs. ACM Trans. Graph. (SIGGRAPH Asia) 30, 6, 186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Lee, D. D., and Seung, S. 1999. Learning the Parts of Objects by Non-negative Matrix Factorization. Nature 401, 788--791.Google ScholarGoogle ScholarCross RefCross Ref
  31. Lippmann, G. 1908. La Photographie Intégrale. Academie des Sciences 146, 446--451.Google ScholarGoogle Scholar
  32. Maimone, A., Wetzstein, G., Lanman, D., Hirsch, M., Raskar, R., and Fuchs, H. 2013. Focus 3D: Compressive Accommodation Display. ACM Trans. Graph. (TOG) 32, 5, 153:1--153:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Masia, B., Wetzstein, G., Didyk, P., and Gutierrez, D. 2013. A survey on computational displays: Pushing the boundaries of optics, computation, and perception. Computers & Graphics 37, 8, 1012--1038. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Matusik, W., and Pfister, H. 2004. 3D TV: a Scalable System for Real-time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes. ACM Trans. on Graph. (SIGGRAPH) 23, 814--824. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Meuret, Y., Bogaert, L., Roelandt, S., Vanderheijden, J., Avci, A., Smet, H. D., and Thienpont, H. 2010. LED Projection Architectures for Stereoscopic and Multiview 3D Displays. In Proc. SPIE 7690, vol. 769007.Google ScholarGoogle Scholar
  36. Nims, J., and Lo, A., 1972. 3-D Screen and System. US patent 3,814,513.Google ScholarGoogle Scholar
  37. Perlin, K., Paxia, S., and Kollin, J. S. 2000. An Autostereoscopic Display. In ACM SIGGRAPH, ACM, 319--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sajadi, B., Gopi, M., and Majumder, A. 2012. Edge-Guided Resolution Enhancement in Projectors via Optical Pixel Sharing. ACM Trans. Graph. 31, 4, 79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sajadi, B., Lai, D.-Q., Iher, A., Gopi, M., and Majumder, A. 2013. Image Enhancement in Projectors Via Optical Pixel Shift and Overlay. In Proc. IEEE ICCP, 1--8.Google ScholarGoogle Scholar
  40. Sandin, D. J., Margolis, T., Ge, J., Girado, J., Peterka, T., and DeFanti, T. A. 2005. The Varrier Autostereoscopic Virtual Reality Display. ACM Trans. Graph. (SIGGRAPH) 24, 3, 894--903. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High Dynamic Range Display Systems. ACM Trans. Graph. (SIGGRAPH) 23, 3, 760--768. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Smoot, L. S., Smithwick, Q., and Reetz, D. 2011. A Volumetric Display Based On A Rim-Driven Varifocal Beamsplitter And LED Backlit LCD. In SIGGRAPH Emerging Technologies, ACM, 22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sullivan, A. 2003. A Solid-State Multi-Planar Volumetric Display. In SID Digest, vol. 32, 207--211.Google ScholarGoogle Scholar
  44. Tompkin, J., Heinzle, S., Kautz, J., and Matusik, W. 2013. Content-Adaptive Lenticular Prints. ACM Trans. Grap. (TOG) 32, 4, 133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Travis, A. R. L. 1990. Autostereoscopic 3-D Display. OSA Appl. Opt. 29, 29, 4341--4342.Google ScholarGoogle ScholarCross RefCross Ref
  46. Urey, H., Chellappan, K. V., Erden, E., and Surman, P. 2011. State of the Art in Stereoscopic and Autostereoscopic Displays. Proc. IEEE 99, 4, 540--555.Google ScholarGoogle ScholarCross RefCross Ref
  47. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays. ACM Trans. Graph. (SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting. ACM Trans. Graph. (SIGGRAPH) 31, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Yang, R., Huang, X., Li, S., and Jaynes, C. 2008. Toward the Light Field Display: Autostereoscopic Rendering via a Cluster of Projectors. IEEE TVCG 14, 1, 84--96. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A compressive light field projection system

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 33, Issue 4
                July 2014
                1366 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/2601097
                Issue’s Table of Contents

                Copyright © 2014 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 27 July 2014
                Published in tog Volume 33, Issue 4

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader