skip to main content
research-article

Deformation embedding for point-based elastoplastic simulation

Published:08 April 2014Publication History
Skip Abstract Section

Abstract

We present a straightforward, easy-to-implement, point-based approach for animating elastoplastic materials. The core idea of our approach is the introduction of embedded space—the least-squares best fit of the material's rest state into three dimensions. Nearest-neighbor queries in the embedded space efficiently update particle neighborhoods to account for plastic flow. These queries are simpler and more efficient than remeshing strategies employed in mesh-based finite element methods. We also introduce a new estimate for the volume of a particle, allowing particle masses to vary spatially and temporally with fixed density. Our approach can handle simultaneous extreme elastic and plastic deformations. We demonstrate our approach on a variety of examples that exhibit a wide range of material behaviors.

Skip Supplemental Material Section

Supplemental Material

a21-sidebyside.mp4

mp4

11.1 MB

References

  1. B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3, 48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Ando, N. Thurey, and R. Tsuruno. 2012. Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans. Vis. Comp. Graph. 18, 8, 1202--1214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. W. Bargteil, C. Wojtan, J. K. Hodgins, and G. Turk. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. H. Bhattacharya, Y. Gao, and A. W. Bargteil. 2011. A level-set method for skinning animated particle data. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. U. Brackbill and H. M. Ruppel. 1986. Flip: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65, 314--343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of clothing with folds and wrinkles. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O'Brien. 2013. Simulating liquids and solid-liquid interactions with lagrangian meshes. ACM Trans. Graph. 32, 2, 17:1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Clavet, P. Beaudoin, and P. Poulin. 2005. Particle-based viscoelastic fluid simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. K. Fleischer, A. Witkin, M. Kass, and D. Terzopoulos. 1987. Cooking with kurt. In Animation in ACM SIGGRAPH Video Review 36.Google ScholarGoogle Scholar
  10. D. Gerszewski, H. Bhattacharya, and A. W. Bargteil. 2009. A point-based method for animating elastoplastic solids. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T. G. Goktekin, A. W. Bargteil, and J. F. O'Brien. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. G. Goktekin, J. Reisch, D. Peachey, and A. Shah. 2007. An effects recipe for rolling a dough, cracking an egg and pouring a sauce. ACM SIGGRAPH 2007 Sketches 67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. F. Harlow and J. Welch. 1965. Numerical calculation of timedependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8, 2182--2189.Google ScholarGoogle ScholarCross RefCross Ref
  14. F. H. Harlow. 1963. The particle-in-cell method for numerical solution of problems in fluid dynamics. Experimental arithmetic, high-speed computations and mathematics. In Proceedings of the Symposium in Applied Mathematics. Vol. 15, 269.Google ScholarGoogle Scholar
  15. G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the ACM/Eurographics Symposium on Computer Animation. 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutre, and M. Gross. 2005. A unified lagrangian approach to solid-fluid animation. In Proceedings of the Symposium on Point-Based Graphics. 125--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Muller, D. Charypar, and M. Gross. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Muller and N. Chentanez. 2011. Solid simulation with oriented particles. ACM Trans. Graph. 30, 92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Muller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. R. Narain, T. Pfaff, and J. F. O'Brien. 2013. Folding and crumpling adaptive sheets. ACM Trans. Graph. 32, 4, 51:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. F. O'Brien, A. W. Bargteil, and J. K. Hodgins. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Allen Ruilova. 2007. Creating realistic cg honey. ACM SIGGRAPH 2007 Posters, 58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. B. Solenthaler and M. Gross. 2011. Two-scale particle simulation. ACM Trans. Graph. 30, 4, 81:1--81:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. B. Solenthaler, J. Schlafli, and R. Pajarola. 2007. A unified particle model for fluid-solid interactions. J. Vis. Comput. Animation 18, 1, 69--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 4, 102:1--102:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. D. Sulsky, Z. Chen, and H. L. Schreyer. 1994. A particle method for history-dependent materials. Comput. Methods Appl. Mechan. Engin. 118, 179--196.Google ScholarGoogle ScholarCross RefCross Ref
  28. D. Terzopoulos and K. Fleischer. 1988. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'88). 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. D. Terzopoulos, J. Platt, and K. Fleischer. 1989. From goop to glop: Heating and melting deformable models. Proc. Graph. Interface 2, 2, 219--226.Google ScholarGoogle Scholar
  30. Dinos Tsiknis. 2006. Better cloth through unbiased strain limiting and physics-aware subdivision. M. S. thesis, University of British Columbia.Google ScholarGoogle Scholar
  31. M. Wicke, D. Ritchie, B. M. Klingner, S. Burke, J. R. Shewchuk, and J. F. O'Brien. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29, 49:1--49:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Chris Wojtan and Greg Turk. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 47:1--47:8. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Deformation embedding for point-based elastoplastic simulation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 33, Issue 2
        March 2014
        135 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2603314
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 April 2014
        • Accepted: 1 December 2013
        • Revised: 1 November 2013
        • Received: 1 November 2012
        Published in tog Volume 33, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader