skip to main content
research-article

Elements of style: learning perceptual shape style similarity

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

The human perception of stylistic similarity transcends structure and function: for instance, a bed and a dresser may share a common style. An algorithmically computed style similarity measure that mimics human perception can benefit a range of computer graphics applications. Previous work in style analysis focused on shapes within the same class, and leveraged structural similarity between these shapes to facilitate analysis. In contrast, we introduce the first structure-transcending style similarity measure and validate it to be well aligned with human perception of stylistic similarity. Our measure is inspired by observations about style similarity in art history literature, which point to the presence of similarly shaped, salient, geometric elements as one of the key indicators of stylistic similarity. We translate these observations into an algorithmic measure by first quantifying the geometric properties that make humans perceive geometric elements as similarly shaped and salient in the context of style, then employing this quantification to detect pairs of matching style related elements on the analyzed models, and finally collating the element-level geometric similarity measurements into an object-level style measure consistent with human perception. To achieve this consistency we employ crowdsourcing to quantify the different components of our measure; we learn the relative perceptual importance of a range of elementary shape distances and other parameters used in our measurement from 50K responses to cross-structure style similarity queries provided by over 2500 participants.We train and validate our method on this dataset, showing it to successfully predict relative style similarity with near 90% accuracy based on 10-fold cross-validation.

Skip Supplemental Material Section

Supplemental Material

a84.mp4

mp4

21.7 MB

References

  1. Andrew, G., and Gao, J. 2007. Scalable training of l1-regularized log-linear models. In International Conference on Machine Learning. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Asafi, S., Goren, A., and Cohen-Or, D. 2013. Weak convex decomposition by lines-of-sight. In Proc. SGP. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Aucouturier, J., and Pachet, F. 2002. Music similarity measures: Whats the use. In SMIR.Google ScholarGoogle Scholar
  4. Ballard, D. H. 1987. Readings in computer vision: Issues, problems, principles, and paradigms. ch. Generalizing the Hough Transform to Detect Arbitrary Shapes. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bell, R. M., and Koren, Y. 2007. Lessons from the netflix prize challenge. SIGKDD Explor. Newsl. 9, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Besl, P. J., and McKay, N. D. 1992. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Blumenson, J. J. G. 1995. Identifying American Architecture: A Pictorial Guide to Styles and Terms, 1600--1945.Google ScholarGoogle Scholar
  8. Bonneel, N., Sunkavalli, K., Paris, S., and Pfister, H. 2013. Example-based video color grading. ACM Trans. on Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullender, G. 2005. Learning to rank using gradient descent. In Proc. ICML. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chen, D.-Y., Tian, X.-P., Shen, Y.-T., and Ouhyoung, M. 2003. On visual similarity based 3D model retrieval. Computer Graphics Forum 22, 3.Google ScholarGoogle ScholarCross RefCross Ref
  11. Chen, X., Saparov, A., Pang, B., and Funkhouser, T. 2012. Schelling points on 3d surface meshes. ACM Trans. Graph. 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Comaniciu, D. 2003. An algorithm for data-driven bandwidth selection. IEEE Trans. Pattern Anal. Mach. Intell. 25, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Connected Lines, 2014. Period furniture style guide. http://www:connectedlines:com/styleguide/index:htm.Google ScholarGoogle Scholar
  14. Curtis, F. E., and Overton, M. L. 2012. A Sequential Quadratic Programming Algorithm for Nonconvex, Nonsmooth Constrained Optimization. SIAM Journal on Optimization 22, 2.Google ScholarGoogle ScholarCross RefCross Ref
  15. Doersch, C., Singh, S., Gupta, A., Sivic, J., and Efros, A. A. 2012. What makes Paris look like Paris? ACM Trans. Graph. 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fu, H., Cohen-Or, D., Dror, G., and Sheffer, A. 2008. Upright orientation of man-made objects. ACM Trans. Graph. 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Garces, E., Agarwala, A., Gutierrez, D., and Hertzmann, A. 2014. A similarity measure for illustration style. ACM Trans. Graph. 33, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Greig, D. M., Porteous, B. T., and Seheult, A. H. 1989. Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society 51, 2.Google ScholarGoogle Scholar
  19. Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., and Salesin, D. H. 2001. Image analogies. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Huang, Q., Koltun, V., and Guibas, L. 2011. Joint shape segmentation with linear programming. ACM Trans. Graph. 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Huang, Q.-X., Su, H., and Guibas, L. 2013. Fine-grained semi-supervised labeling of large shape collections. ACM Trans. Graph. 32, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hurtut, T., Gousseau, Y., Cheriet, F., and Schmitt, F. 2011. Artistic line-drawings retrieval based on the pictorial content. J. Comput. Cult. Herit. 4, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Johnson, A. E., and Hebert, M. 1999. Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3D mesh segmentation and labeling. ACM Trans. Graphics 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V. 2012. A probabilistic model for component-based shape synthesis. ACM Trans. Graph. 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kim, V. G., Li, W., Mitra, N. J., Chaudhuri, S., Diverdi, S., and Funkhouser, T. 2013. Learning part-based templates from large collections of 3d shapes. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Leifman, G. 2012. Surface regions of interest for viewpoint selection. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lewis, A. S., and Overton, M. L. 2013. Nonsmooth optimization via quasi-newton methods. Math. Program. 141, 1--2.Google ScholarGoogle ScholarCross RefCross Ref
  29. Lewis, M. 2008. Architectura: elements of architectural style. Barrons Educational Series.Google ScholarGoogle Scholar
  30. Li, H., Zhang, H., Wang, Y., Cao, J., Shamir, A., and Cohen-Or, D. 2013. Curve style analysis in a set of shapes. Computer Graphics Forum 32, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Liu, T., Hertzmann, A., Li, W., and Funkhouser, T. 2015. Style compatibility for 3d furniture models. ACM Trans. Graphics, to appear 34, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ma, C., Huang, H., Sheffer, A., Kalogerakis, E., and Wang, R. 2014. Analogy-driven 3D style transfer. Computer Graphics Forum 33, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Mitra, N. J., Guibas, L. J., and Pauly, M. 2006. Partial and approximate symmetry detection for 3d geometry. ACM Trans. Graph. 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Nocedal, J., and Wright, S. J. 2006. Numerical Optimization.Google ScholarGoogle Scholar
  35. Nutting, W. 1928. Furniture Treasury.Google ScholarGoogle Scholar
  36. Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. 2002. Shape distributions. ACM Trans. Graph. 21, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Schmidt, M., Fung, G., and Rosales, R. 2007. Fast optimization methods for l1 regularization: A comparative study and two new approaches. In Proc. ECML. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Shapira, L., Shamir, A., and Cohen-Or, D. 2008. Consistent mesh partitioning and skeletonisation using the shape diameter function. The Visual Computer 24, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Shtrom, E., Leifman, G., and Tal, A. 2013. Saliency detection in large point sets. In Proc. ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Tenenbaum, J. B., and Freeman, W. T. 2000. Separating style and content with bilinear models. Neural Comput. 12, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Tenenbaum, J., Silva, V., and Langford, J. 2000. A global geometric framework for nonlinear dimensionality reduction. Science 290, 5500.Google ScholarGoogle ScholarCross RefCross Ref
  42. Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society 58.Google ScholarGoogle Scholar
  43. van Kaick, O., Xu, K., Zhang, H., Wang, Y., Sun, S., Shamir, A., and Cohen-Or, D. 2013. Co-hierarchical analysis of shape structures. ACM Trans. on Graphics 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. van Kaick, O., Fish, N., Kleiman, Y., Asafi, S., and Cohen-Or, D. 2014. Shape segmentation by approximate convexity analysis. ACM Trans. on Graph. 34, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Willats, J., and Durand, F. 2005. Defining pictorial style: lessons from linguistics and computer graphics. Axiomathes 15.Google ScholarGoogle Scholar
  46. Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z.-Q. 2010. Style-content separation by anisotropic part scales. ACM Trans. Graph. 29, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Yumer, M., and Kara, L. 2014. Co-constrained handles for deformation in shape collections. ACM Trans. Graph. 32, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Elements of style: learning perceptual shape style similarity

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 4
        August 2015
        1307 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2809654
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2015
        Published in tog Volume 34, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader