Skip to main content

2023 | OriginalPaper | Buchkapitel

2. Decarbonization

verfasst von : Maria Magdalena Ramirez-Corredores, Mireya R. Goldwasser, Eduardo Falabella de Sousa Aguiar

Erschienen in: Decarbonization as a Route Towards Sustainable Circularity

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter describes the pathways to convert emitted (or otherwise wasted) CO2 into more valuable products or chemical feedstock (CU) as means for adding value or creating revenues through CO2 utilization, which might contribute to attaining economic sustainability while solving energy and environmental issues. Emphasis is given on the need of implementing R&D processes for the conversion of CO2 (using low-carbon energy sources) to warrant a green future. Thus, inorganic as well as organic valorization routes are described, together with other more aspirational and inspirational routes, such as artificial photosynthesis, keeping in mind that CO2 abatement cannot rely on natural photosynthesis as the unique process to reduce CO2 concentration in the atmosphere. Process conditions, economic and energy limitations, or incentives are also incorporated in the discussion. The issues faced and addressed by the end-users and the challenges of marketing the end-products are included in a separate section. Another section of the chapter introduces the net-zero initiative, approaches, and pathways to the 1.5 °C goal, to finally reach a section dealing with the potential of the different sources of energy, as well as with the decarbonization ambitious targets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The land sector refers to the agriculture, forestry, and other land uses, involved in activities leading to anthropogenic emissions.
 
Literatur
15.
Zurück zum Zitat B. Metz et al., Carbon dioxide capture and storage. Special Report. Intergovernmental Panel on Climate Change (IPCC) (Cambridge University Press, UK, 2005), p. 442 B. Metz et al., Carbon dioxide capture and storage. Special Report. Intergovernmental Panel on Climate Change (IPCC) (Cambridge University Press, UK, 2005), p. 442
16.
Zurück zum Zitat D. Gielen et al., Prospects for CO2 Capture and Storage (International Energy Agency, Paris, France, 2006), p. 251 D. Gielen et al., Prospects for CO2 Capture and Storage (International Energy Agency, Paris, France, 2006), p. 251
17.
Zurück zum Zitat S.M. Al-Fattah et al., Carbon Capture and Storage. Technologies, Policies, Economics, and Implementation Strategies (CRC Press, Brussels, Belgium, 2011), p. 368 S.M. Al-Fattah et al., Carbon Capture and Storage. Technologies, Policies, Economics, and Implementation Strategies (CRC Press, Brussels, Belgium, 2011), p. 368
18.
Zurück zum Zitat M.L. Godec, Global technology roadmap for CCS in industry. Sectoral assessment CO2 enhanced oil recovery. Final Report (Advanced Resources International, Inc. Arlington, VA. USA, 2011), p. 47 M.L. Godec, Global technology roadmap for CCS in industry. Sectoral assessment CO2 enhanced oil recovery. Final Report (Advanced Resources International, Inc. Arlington, VA. USA, 2011), p. 47
19.
Zurück zum Zitat A. Esken et al., CCS global. Prospects of carbon capture and storage technologies (CCS) in emerging economies. GIZ-PN 2009.9022.6 Final Report (Wuppertal Institute, Wuppertal, Germany, 2012), p. 92 A. Esken et al., CCS global. Prospects of carbon capture and storage technologies (CCS) in emerging economies. GIZ-PN 2009.9022.6 Final Report (Wuppertal Institute, Wuppertal, Germany, 2012), p. 92
20.
Zurück zum Zitat T. Mikunda et al., CO2 capture and storage (CCS) in energy-intensive industries. Zero Emissions Platform (ZEP). (2013), p. 38 T. Mikunda et al., CO2 capture and storage (CCS) in energy-intensive industries. Zero Emissions Platform (ZEP). (2013), p. 38
21.
Zurück zum Zitat S. Mcculloch et al., 20 Years of Carbon Capture and Storage. Accelerating Future Deployment (International Energy Agency, Paris, France, 2016), p. 112 S. Mcculloch et al., 20 Years of Carbon Capture and Storage. Accelerating Future Deployment (International Energy Agency, Paris, France, 2016), p. 112
22.
Zurück zum Zitat Clean Energy Technologies, Canada’s CO2 Capture and Storage Technology Roadmap (CANMET Energy Technology Centre, 2006), p. 89. www.co2trm.gc.ca. Clean Energy Technologies, Canada’s CO2 Capture and Storage Technology Roadmap (CANMET Energy Technology Centre, 2006), p. 89. www.​co2trm.​gc.​ca.
23.
Zurück zum Zitat P. Fennell, B. Anthony, Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture (Woodhead Publishing, Cambridge, UK, 2015), p. 446 P. Fennell, B. Anthony, Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture (Woodhead Publishing, Cambridge, UK, 2015), p. 446
25.
Zurück zum Zitat W.J.J. Huijgen, R.N.J. Comans, Carbon dioxide sequestration by mineral carbonation: literature review. ECN-C--03–016 Report (Energy Research Centre of the Netherlands, 2003), p. 53 W.J.J. Huijgen, R.N.J. Comans, Carbon dioxide sequestration by mineral carbonation: literature review. ECN-C--03–016 Report (Energy Research Centre of the Netherlands, 2003), p. 53
26.
Zurück zum Zitat Y. Zhang, Progress in carbon dioxide sequestration by mineral carbonation. CIESC J 58(1), 1 (2007) Y. Zhang, Progress in carbon dioxide sequestration by mineral carbonation. CIESC J 58(1), 1 (2007)
28.
Zurück zum Zitat M. Delgado Torróntegui, Assessing the mineral carbonation science and technology. MSc Thesis from Swiss Federal Institute of Technology, ETH, Institute of Process Engineering, 2010, p. 55 M. Delgado Torróntegui, Assessing the mineral carbonation science and technology. MSc Thesis from Swiss Federal Institute of Technology, ETH, Institute of Process Engineering, 2010, p. 55
35.
Zurück zum Zitat R.M. Santos et al., Integrated mineral carbonation reactor technology for sustainable carbon dioxide sequestration: ‘CO2 energy reactor’, in Proceedings of the 11th International Conference on Greenhouse Gas Control Technologies, GHGT 2012, vol. 37 (Elsevier Ltd., Kyoto, 2013), pp. 5884–5891. https://doi.org/10.1016/j.egypro.2013.06.513 R.M. Santos et al., Integrated mineral carbonation reactor technology for sustainable carbon dioxide sequestration: ‘CO2 energy reactor’, in Proceedings of the 11th International Conference on Greenhouse Gas Control Technologies, GHGT 2012, vol. 37 (Elsevier Ltd., Kyoto, 2013), pp. 5884–5891. https://​doi.​org/​10.​1016/​j.​egypro.​2013.​06.​513
41.
Zurück zum Zitat P. Styring, Why is CCU an important technology option for europe? SETIS Mag. 11, 22–23 (2016) P. Styring, Why is CCU an important technology option for europe? SETIS Mag. 11, 22–23 (2016)
42.
Zurück zum Zitat R. Zevenhoven et al., Carbon dioxide mineralisation and integration with flue gas desulphurisation applied to a modern coal-fired power plant, in Proceedings of the 25th International Conference on Efficiency, Cost, Optimization and Simulation of Energy Conversion Systems and Processes, ECOS, vol. 6 (Perugia, Italy, Aabo Akademi University, 2012), pp. 83–102 R. Zevenhoven et al., Carbon dioxide mineralisation and integration with flue gas desulphurisation applied to a modern coal-fired power plant, in Proceedings of the 25th International Conference on Efficiency, Cost, Optimization and Simulation of Energy Conversion Systems and Processes, ECOS, vol. 6 (Perugia, Italy, Aabo Akademi University, 2012), pp. 83–102
47.
Zurück zum Zitat I.S.S. Romão, Production of magnesium carbonates from serpentinites for CO2 mineral sequestration- optimisation towards industrial application. Ph.D Thesis from Chemical Engineering, Faculty of Science and Technology, 2015, p. 188 I.S.S. Romão, Production of magnesium carbonates from serpentinites for CO2 mineral sequestration- optimisation towards industrial application. Ph.D Thesis from Chemical Engineering, Faculty of Science and Technology, 2015, p. 188
48.
Zurück zum Zitat A. Zimmermann et al., Carbon capture and storage by mineralisation. Stage Gate 1 Report (Energy Technologies Institute. Loughborough, UK, 2011), p. 350 A. Zimmermann et al., Carbon capture and storage by mineralisation. Stage Gate 1 Report (Energy Technologies Institute. Loughborough, UK, 2011), p. 350
49.
Zurück zum Zitat M. Priestnall, Decarbonising flue gas using CO2 mineralisation—project experience on ships, in Proceedings of the Keeping the Momentum (Geological Society, London, UK, 2014), p. 9 M. Priestnall, Decarbonising flue gas using CO2 mineralisation—project experience on ships, in Proceedings of the Keeping the Momentum (Geological Society, London, UK, 2014), p. 9
50.
Zurück zum Zitat M. Priestnall, Silica, metals, Mg/ca oxides, CCS (& electricity) from minerals and wastes, in Proceedings of the Mineralisation Cluster Workshop (London, UK, 2012), p. 5 M. Priestnall, Silica, metals, Mg/ca oxides, CCS (& electricity) from minerals and wastes, in Proceedings of the Mineralisation Cluster Workshop (London, UK, 2012), p. 5
51.
Zurück zum Zitat M. Priestnall, Method and system of sequestrating carbon dioxide Patent No. GB2515995 (Cambridge Carbon Capture Ltd, 2015), 14 Jan 2015 M. Priestnall, Method and system of sequestrating carbon dioxide Patent No. GB2515995 (Cambridge Carbon Capture Ltd, 2015), 14 Jan 2015
52.
Zurück zum Zitat M. Priestnall, Method and system of activation of mineral silicate minerals, Patent No. US9963351 (Also published as CN106573197, DK3129125, EP3129125, ES2824676, GB2516141, PL3129125, US2017029284, WO2015154887). (Cambridge Carbon Capture Ltd, 2018), 08 May 2018 M. Priestnall, Method and system of activation of mineral silicate minerals, Patent No. US9963351 (Also published as CN106573197, DK3129125, EP3129125, ES2824676, GB2516141, PL3129125, US2017029284, WO2015154887). (Cambridge Carbon Capture Ltd, 2018), 08 May 2018
72.
Zurück zum Zitat D. Kitchen, A. Pinto, LCA technology for the modernization of existing plants, in Proceedings of the 35th Annual Ammonia Symposium, vol. 31 (Publ by AIChE, New York, NY, United States. San Diego, CA, USA 1991), pp. 219–226. D. Kitchen, A. Pinto, LCA technology for the modernization of existing plants, in Proceedings of the 35th Annual Ammonia Symposium, vol. 31 (Publ by AIChE, New York, NY, United States. San Diego, CA, USA 1991), pp. 219–226.
95.
Zurück zum Zitat X. Gao et al., Smart designs of anti-coking and anti-sintering Ni-based catalysts for dry reforming of methane: a recent review. Reactions 1(2), 162–194 (2020)CrossRef X. Gao et al., Smart designs of anti-coking and anti-sintering Ni-based catalysts for dry reforming of methane: a recent review. Reactions 1(2), 162–194 (2020)CrossRef
98.
Zurück zum Zitat S.C. Teuner et al., CO through CO2 reforming - the calcor standard and calcor economy processes. Oil Gas European Magazine 27(3), 44–46 (2001) S.C. Teuner et al., CO through CO2 reforming - the calcor standard and calcor economy processes. Oil Gas European Magazine 27(3), 44–46 (2001)
99.
Zurück zum Zitat G. Kurz, S. Teuner, Calcor Process for CO Production, vol. 43 (Erdoel und Kohle, Erdgas, Petrochemie, Germany, F.R., 1990), pp. 171–172. G. Kurz, S. Teuner, Calcor Process for CO Production, vol. 43 (Erdoel und Kohle, Erdgas, Petrochemie, Germany, F.R., 1990), pp. 171–172.
100.
Zurück zum Zitat N.R. Udengaard, Sulfur passivated reforming process lowers syngas H2/CO ratio. Oil Gas J. 90(10), 62–67 (1992) N.R. Udengaard, Sulfur passivated reforming process lowers syngas H2/CO ratio. Oil Gas J. 90(10), 62–67 (1992)
102.
Zurück zum Zitat H.C. Dibben et al., Make low H2/CO syngas using sulfur passivated reforming. Hydrocarbon Process 65(1), 71–74 (1986) H.C. Dibben et al., Make low H2/CO syngas using sulfur passivated reforming. Hydrocarbon Process 65(1), 71–74 (1986)
117.
Zurück zum Zitat H. Webb et al., New applications of high-temperature solar energy for the production of transportable fuels and chemicals and for energy storage. ATR-78(7691–04)-1 Report (The Aerospace Corporation, Los Angeles, CA. USA, 1979), p. 180 H. Webb et al., New applications of high-temperature solar energy for the production of transportable fuels and chemicals and for energy storage. ATR-78(7691–04)-1 Report (The Aerospace Corporation, Los Angeles, CA. USA, 1979), p. 180
130.
Zurück zum Zitat J.E. Obrien et al., Long-term performance of solid oxide stacks with electrode-supported cells operating in the steam electrolysis mode, in Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, vol. 4 (Denver, CO 2011), pp. 495–503 J.E. Obrien et al., Long-term performance of solid oxide stacks with electrode-supported cells operating in the steam electrolysis mode, in Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, vol. 4 (Denver, CO 2011), pp. 495–503
131.
Zurück zum Zitat E.A. Harvego et al., System evaluation and life-cycle cost analysis of a commercialscale high-temperature electrolysis hydrogen production plant, in Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, IMECE, vol. 6 (Houston, TX 2012), pp. 875–884. https://doi.org/10.1115/IMECE2012-89649 E.A. Harvego et al., System evaluation and life-cycle cost analysis of a commercialscale high-temperature electrolysis hydrogen production plant, in Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, IMECE, vol. 6 (Houston, TX 2012), pp. 875–884. https://​doi.​org/​10.​1115/​IMECE2012-89649
132.
Zurück zum Zitat R. Küngas et al., Systematic lifetime testing of stacks in CO2 electrolysis. ECS Trans. 78(1), 2895–2905 (2017)CrossRef R. Küngas et al., Systematic lifetime testing of stacks in CO2 electrolysis. ECS Trans. 78(1), 2895–2905 (2017)CrossRef
137.
Zurück zum Zitat K.P. Kuhl et al., (Opus 12 Inc.) Reactor with advanced architecture for the electrochemical reaction of CO2, CO and other chemical compounds, Patent No. US2017321333, US2017321334 (Also published as WO2017192787, WO2017192788) (2017), 09 Nov 2017 K.P. Kuhl et al., (Opus 12 Inc.) Reactor with advanced architecture for the electrochemical reaction of CO2, CO and other chemical compounds, Patent No. US2017321333, US2017321334 (Also published as WO2017192787, WO2017192788) (2017), 09 Nov 2017
138.
Zurück zum Zitat T.E. Lister et al., (Battelle Energy Alliance, Llc) Methods and systems for the electrochemical reduction of carbon dioxide using switchable polarity materials, Patent No. US2020255958 (Also published as WO2019070526) (2020), 13 Aug 2020 T.E. Lister et al., (Battelle Energy Alliance, Llc) Methods and systems for the electrochemical reduction of carbon dioxide using switchable polarity materials, Patent No. US2020255958 (Also published as WO2019070526) (2020), 13 Aug 2020
139.
Zurück zum Zitat R.I. Masel, (Dioxide Materials Inc) Devices for electrocatalytic conversion of carbon dioxide, Patent No. US10173169 (Also published as US2018111083), 26 Apr 2018 R.I. Masel, (Dioxide Materials Inc) Devices for electrocatalytic conversion of carbon dioxide, Patent No. US10173169 (Also published as US2018111083), 26 Apr 2018
140.
Zurück zum Zitat R.I. Masel, (Dioxide Materials Inc) Electrocatalytic process for carbon dioxide conversion, Patent No. US2019211463, 11 Jul 2019 R.I. Masel, (Dioxide Materials Inc) Electrocatalytic process for carbon dioxide conversion, Patent No. US2019211463, 11 Jul 2019
141.
Zurück zum Zitat R.I. Masel et al., (Dioxide Materials Inc) Electrochemical device for converting carbon dioxide to a reaction product, Patent No. US9481939 (Also published as US2016108530). 01 Nov 2016 R.I. Masel et al., (Dioxide Materials Inc) Electrochemical device for converting carbon dioxide to a reaction product, Patent No. US9481939 (Also published as US2016108530). 01 Nov 2016
142.
Zurück zum Zitat R.I. Masel, A. Salehi-Khojin, (Dioxide Materials Inc) Electrocatalytic process for carbon dioxide conversion, Patent No. US9012345 (Also published as US2013157174) 21 Apr 2015 R.I. Masel, A. Salehi-Khojin, (Dioxide Materials Inc) Electrocatalytic process for carbon dioxide conversion, Patent No. US9012345 (Also published as US2013157174) 21 Apr 2015
143.
Zurück zum Zitat R.I. Masel, A. Salehi-Khojin, (Dioxide Materials Inc) Electrocatalytic process for carbon dioxide conversion, Patent No. US9555367 (Also published as US2015209722), 31 Jan 2017 R.I. Masel, A. Salehi-Khojin, (Dioxide Materials Inc) Electrocatalytic process for carbon dioxide conversion, Patent No. US9555367 (Also published as US2015209722), 31 Jan 2017
144.
Zurück zum Zitat R.I. Masel et al., (Dioxide Materials Inc) Electrocatalytic process for carbon dioxide conversion, Patent No. US9815021 (Also published as US2017259206, WO2017176600), 14 Sep 2017 R.I. Masel et al., (Dioxide Materials Inc) Electrocatalytic process for carbon dioxide conversion, Patent No. US9815021 (Also published as US2017259206, WO2017176600), 14 Sep 2017
149.
Zurück zum Zitat M. Aresta, The carbon dioxide problem, in An Economy Based on Carbon Dioxide and Water, Potential of Large Scale Carbon Dioxide Utilization, ed. by M.K. Aresta, Iftekhar, S. Kawi (Springer, Switzerland AG, 2019), pp. v–xi M. Aresta, The carbon dioxide problem, in An Economy Based on Carbon Dioxide and Water, Potential of Large Scale Carbon Dioxide Utilization, ed. by M.K. Aresta, Iftekhar, S. Kawi (Springer, Switzerland AG, 2019), pp. v–xi
160.
Zurück zum Zitat C. Ampelli et al., An electrochemical reactor for the CO2 reduction in gas phase by using conductive polymer based electrocatalysts, in 10th European Symposium on Electrochemical Engineering, ESEE 2014, vol. 41 (Special Issue), (2014), pp. 13–18. https://doi.org/10.3303/CET1441003 C. Ampelli et al., An electrochemical reactor for the CO2 reduction in gas phase by using conductive polymer based electrocatalysts, in 10th European Symposium on Electrochemical Engineering, ESEE 2014, vol. 41 (Special Issue), (2014), pp. 13–18. https://​doi.​org/​10.​3303/​CET1441003
165.
Zurück zum Zitat H. Goehna, P. Koenig, Producing methanol from CO2. ChemTech 24(6), 36–39 (1994) H. Goehna, P. Koenig, Producing methanol from CO2. ChemTech 24(6), 36–39 (1994)
168.
Zurück zum Zitat O.S. Joo et al., Camere process for methanol synthesis from CO2 hydrogenation, in Studies in Surface Science and Catalysis (Elsevier Inc, 2004), pp. 67–72 O.S. Joo et al., Camere process for methanol synthesis from CO2 hydrogenation, in Studies in Surface Science and Catalysis (Elsevier Inc, 2004), pp. 67–72
173.
Zurück zum Zitat R.I. Masel et al., (Dioxide Materials Inc) Hydrogenation of formic acid to formaldehyde, Patent No. US9193593 (Also published as AU2014218628, CN105339336, CN107557086, EP2958882, US2014239231, WO2014130962), 24 Nov 2015 R.I. Masel et al., (Dioxide Materials Inc) Hydrogenation of formic acid to formaldehyde, Patent No. US9193593 (Also published as AU2014218628, CN105339336, CN107557086, EP2958882, US2014239231, WO2014130962), 24 Nov 2015
174.
Zurück zum Zitat R.I. Masel et al., (Dioxide Materials Inc) Devices and processes for carbon dioxide conversion into useful fuels and chemicals Patent No. US9181625 (Also published as CN104822861, EP2898120, US2014093799, WO2014047661, WO201404766), 10 Nov 2015 R.I. Masel et al., (Dioxide Materials Inc) Devices and processes for carbon dioxide conversion into useful fuels and chemicals Patent No. US9181625 (Also published as CN104822861, EP2898120, US2014093799, WO2014047661, WO201404766), 10 Nov 2015
175.
Zurück zum Zitat R.I. Masel, (Dioxide Materials Inc) Process for the sustainable production of acrylic acid, Patent No. US9790161 (Also published as US2019135726 (05/09/2019), US2018057439 (03/01/18), US20160207866 (07/21/16), AU2017200539), 17 Oct 2017 R.I. Masel, (Dioxide Materials Inc) Process for the sustainable production of acrylic acid, Patent No. US9790161 (Also published as US2019135726 (05/09/2019), US2018057439 (03/01/18), US20160207866 (07/21/16), AU2017200539), 17 Oct 2017
176.
Zurück zum Zitat R.I. Masel, (Dioxide Materials Inc) System and process for the production of renewable fuels and chemicals, Patent No. EP3504359 (Also published as CN109642332, KR20190043156, WO2018044720), 3 July 2019 R.I. Masel, (Dioxide Materials Inc) System and process for the production of renewable fuels and chemicals, Patent No. EP3504359 (Also published as CN109642332, KR20190043156, WO2018044720), 3 July 2019
177.
Zurück zum Zitat J.J. Kaczur et al., (Dioxide Materials Inc) Method and system for electrochemical production of formic acid from carbon dioxide, Patent No. US2019010620, 01 Oct 2019 J.J. Kaczur et al., (Dioxide Materials Inc) Method and system for electrochemical production of formic acid from carbon dioxide, Patent No. US2019010620, 01 Oct 2019
218.
Zurück zum Zitat S. Nariya, M.G. Kalyuzhnaya, Diversity, Physiology, and Biotechnological Potential of halo(alkali)philic Methane-Consuming Bacteria, in Methanotrophs: Microbiology Fundamentals and Biotechnological Applications, ed. by E.Y. Lee (Springer International Publishing, Cham, 2019), pp. 139–161. https://doi.org/10.1007/978-3-030-23261-0_5 S. Nariya, M.G. Kalyuzhnaya, Diversity, Physiology, and Biotechnological Potential of halo(alkali)philic Methane-Consuming Bacteria, in Methanotrophs: Microbiology Fundamentals and Biotechnological Applications, ed. by E.Y. Lee (Springer International Publishing, Cham, 2019), pp. 139–161. https://​doi.​org/​10.​1007/​978-3-030-23261-0_​5
230.
Zurück zum Zitat J. Kizlink, I. Pastucha, Preparation of dimethyl carbonate from methanol and carbon dioxide in the presence of Sn(IV) and ti(IV) alkoxides and metal acetates. Collect. Czech. Chem. Commun. 60, 687–692 (1995)CrossRef J. Kizlink, I. Pastucha, Preparation of dimethyl carbonate from methanol and carbon dioxide in the presence of Sn(IV) and ti(IV) alkoxides and metal acetates. Collect. Czech. Chem. Commun. 60, 687–692 (1995)CrossRef
239.
Zurück zum Zitat W. Leitner et al., How can we put the climate killer CO2 to good use? Bayer Annual Report (2010), pp. 32–37. W. Leitner et al., How can we put the climate killer CO2 to good use? Bayer Annual Report (2010), pp. 32–37.
248.
Zurück zum Zitat F. Gütlbauer, N. Getoff, Radiation chemical carboxylation of hydroxycompounds. Int. J. Appl. Radiat. Isot. 16(12), 673–680 (1965)CrossRef F. Gütlbauer, N. Getoff, Radiation chemical carboxylation of hydroxycompounds. Int. J. Appl. Radiat. Isot. 16(12), 673–680 (1965)CrossRef
249.
Zurück zum Zitat K.F. Krapfenbauer, N. Getoff, Radiation-and photo-induced formation of salicylic acid from phenol and CO2 in aqueous solution. World Resour. Rev. 9, 421–433 (1997) K.F. Krapfenbauer, N. Getoff, Radiation-and photo-induced formation of salicylic acid from phenol and CO2 in aqueous solution. World Resour. Rev. 9, 421–433 (1997)
255.
Zurück zum Zitat A.J. Ragauskas, All about biorefining, in Proceedings of the 239th ACS National Meeting (San Francisco, CA 2010) A.J. Ragauskas, All about biorefining, in Proceedings of the 239th ACS National Meeting (San Francisco, CA 2010)
257.
Zurück zum Zitat A. Demirbas, Biorefineries: current activities and future developments. Energy Convers. Manage. 50(11), 2782–2801 (2009)CrossRef A. Demirbas, Biorefineries: current activities and future developments. Energy Convers. Manage. 50(11), 2782–2801 (2009)CrossRef
259.
Zurück zum Zitat E.F. Sousa-Aguiar et al., Petrobras: the concept of integrated biorefineries applied to the oleochemistry industry: rational utilization of products and residues via catalytic routes, in Industrial Biorenewables: A Practical Viewpoint, ed. by P. Domínguez De María (Wiley, 2016), pp. 451–465. https://doi.org/10.1002/9781118843796.ch20 E.F. Sousa-Aguiar et al., Petrobras: the concept of integrated biorefineries applied to the oleochemistry industry: rational utilization of products and residues via catalytic routes, in Industrial Biorenewables: A Practical Viewpoint, ed. by P. Domínguez De María (Wiley, 2016), pp. 451–465. https://​doi.​org/​10.​1002/​9781118843796.​ch20
271.
301.
Zurück zum Zitat T.B. Johansson et al., Global Energy Assessment—Toward a Sustainable Future (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2012), p. 1884 T.B. Johansson et al., Global Energy Assessment—Toward a Sustainable Future (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2012), p. 1884
302.
Zurück zum Zitat A.D. Pee et al., Decarbonization of Industrial Sectors: The Next Frontier. (McKinsey Co, USA, 2018), p. 68 A.D. Pee et al., Decarbonization of Industrial Sectors: The Next Frontier. (McKinsey Co, USA, 2018), p. 68
308.
Zurück zum Zitat M. Krishnan et al., The net-zero transition: what it would cost, what it could bring (McKinsey Global Institute, 2022), p. 224 M. Krishnan et al., The net-zero transition: what it would cost, what it could bring (McKinsey Global Institute, 2022), p. 224
313.
314.
Zurück zum Zitat S.D. Simpson et al., (Lanzatech New Zealand Ltd) Carbon capture in fermentation, Patent No. US8376736 (Also published as US20100317074), 19 Feb 2013 S.D. Simpson et al., (Lanzatech New Zealand Ltd) Carbon capture in fermentation, Patent No. US8376736 (Also published as US20100317074), 19 Feb 2013
315.
Zurück zum Zitat S.D. Simpson et al., (Lanzatech New Zealand Ltd) Microbial fermentation of gaseous substrates to produce alcohols, Patent No. US7972824 (Also published as NZ546496, US2009203100, WO2007117157). 05 Jul 201. S.D. Simpson et al., (Lanzatech New Zealand Ltd) Microbial fermentation of gaseous substrates to produce alcohols, Patent No. US7972824 (Also published as NZ546496, US2009203100, WO2007117157). 05 Jul 201.
316.
Zurück zum Zitat S.D. Simpson et al., (Lanzatech New Zealand Ltd) Alcohol production process, Patent No. US8293509 (Also published as NZ553984, US20100105115). 23 Oct 2012. S.D. Simpson et al., (Lanzatech New Zealand Ltd) Alcohol production process, Patent No. US8293509 (Also published as NZ553984, US20100105115). 23 Oct 2012.
317.
Zurück zum Zitat S.D. Simpson et al., (Lanzatech New Zealand Ltd) Bacteria and methods of use thereof, Patent No. US8222013. 17 Jul 2012. S.D. Simpson et al., (Lanzatech New Zealand Ltd) Bacteria and methods of use thereof, Patent No. US8222013. 17 Jul 2012.
318.
Zurück zum Zitat S.D. Simpson et al., (Lanzatech New Zealand Ltd) Process for production of alcohols by microbial fermentation, Patent No. US8658408. 25 Feb 2014. S.D. Simpson et al., (Lanzatech New Zealand Ltd) Process for production of alcohols by microbial fermentation, Patent No. US8658408. 25 Feb 2014.
326.
Zurück zum Zitat J. Desai et al., Carbon dioxide sequestration by mineral carbonation using alkaline rich material, in Proceedings of the 2020 International Conference on Sustainable Innovations in Civil and Mechanical Engineering, ICSICME 2020, vol. 814. (Institute of Physics Publishing, 2020). https://doi.org/10.1088/1757-899X/814/1/012035 J. Desai et al., Carbon dioxide sequestration by mineral carbonation using alkaline rich material, in Proceedings of the 2020 International Conference on Sustainable Innovations in Civil and Mechanical Engineering, ICSICME 2020, vol. 814. (Institute of Physics Publishing, 2020). https://​doi.​org/​10.​1088/​1757-899X/​814/​1/​012035
329.
Zurück zum Zitat A. Fernandez, K. West, Technology Roadmap—Low-Carbon Transition in the Cement Industry. (International Energy Agency, Paris, France, 2018), p. 62. A. Fernandez, K. West, Technology Roadmap—Low-Carbon Transition in the Cement Industry. (International Energy Agency, Paris, France, 2018), p. 62.
350.
Zurück zum Zitat Office of Air Quality Planning and Standards, Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the Petroleum Refining Industry (US-EPA, Research Triangle Park, North Carolina, USA, 2010), p. 42 Office of Air Quality Planning and Standards, Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the Petroleum Refining Industry (US-EPA, Research Triangle Park, North Carolina, USA, 2010), p. 42
354.
Zurück zum Zitat P.J. Hall et al., CO2-derived fuels for energy storage, in Carbon Dioxide Utiiisation: Closing the Carbon Cycle, ed. by P. Styring et al. (Elsevier, Amsterdam, 2015), pp. 33–44 P.J. Hall et al., CO2-derived fuels for energy storage, in Carbon Dioxide Utiiisation: Closing the Carbon Cycle, ed. by P. Styring et al. (Elsevier, Amsterdam, 2015), pp. 33–44
357.
Zurück zum Zitat T. Ayvalı et al., The position of ammonia in decarbonising maritime industry: an overview and perspectives: Part I. Johnson Matthey Technol. Rev. 65(2), 275–290 (2021)CrossRef T. Ayvalı et al., The position of ammonia in decarbonising maritime industry: an overview and perspectives: Part I. Johnson Matthey Technol. Rev. 65(2), 275–290 (2021)CrossRef
358.
Zurück zum Zitat T. Ayvalı et al., The position of ammonia in decarbonising maritime industry: an overview and perspectives: Part II. Johnson Matthey Technol. Rev. 65(2), 291–300 (2021)CrossRef T. Ayvalı et al., The position of ammonia in decarbonising maritime industry: an overview and perspectives: Part II. Johnson Matthey Technol. Rev. 65(2), 291–300 (2021)CrossRef
370.
Zurück zum Zitat L.J. Meduna, Autobiography of L. J. Meduna. Part I and II. Convuls. Ther. 1(1–2), 43–57, 121–135 (1985) L.J. Meduna, Autobiography of L. J. Meduna. Part I and II. Convuls. Ther. 1(1–2), 43–57, 121–135 (1985)
377.
Zurück zum Zitat M.V. Natu, H.A. Avery, Supercritical CO2 encapsulation of cosmetic ingredients: novel methods for tailoring ingredients for the cosmetics industry. Househ. Pers. Care Today 93(3), 42–45 (2014) M.V. Natu, H.A. Avery, Supercritical CO2 encapsulation of cosmetic ingredients: novel methods for tailoring ingredients for the cosmetics industry. Househ. Pers. Care Today 93(3), 42–45 (2014)
393.
Zurück zum Zitat M. Schipek, Treatment of acid mine lakes—lab and field studies. PhD Thesis from Freiberg Online Geology, 2011, pp. 381. M. Schipek, Treatment of acid mine lakes—lab and field studies. PhD Thesis from Freiberg Online Geology, 2011, pp. 381.
395.
Zurück zum Zitat M. Nagy et al., Characterization of CO2 precipitated kraft lignin to promote its utilization. Green Chem. 12(1), 31–34 (2010)CrossRef M. Nagy et al., Characterization of CO2 precipitated kraft lignin to promote its utilization. Green Chem. 12(1), 31–34 (2010)CrossRef
407.
Zurück zum Zitat T.A. Chubb et al., Loss factors in the design of thermochemical power plants, CO2-CH4 vs. SO3 chemical transplant fluids, in Sun 2, Proceedings of the International Solar Energy Society. Silver Jubilee Congress (1979), pp. 126–129 T.A. Chubb et al., Loss factors in the design of thermochemical power plants, CO2-CH4 vs. SO3 chemical transplant fluids, in Sun 2, Proceedings of the International Solar Energy Society. Silver Jubilee Congress (1979), pp. 126–129
409.
Zurück zum Zitat R.B. Diver, Transporting solar energy with chemistry. ChemTech 17(10), 606–611 (1987) R.B. Diver, Transporting solar energy with chemistry. ChemTech 17(10), 606–611 (1987)
410.
Zurück zum Zitat J.D. Fish, D.C. Hawn, Closed loop thermochemical energy transport based on CO2 reforming of methane: Balancing the reaction systems, in Proceedings of the 21st Intersociety Energy Conversion Engineering Conference: Advancing toward Technology Breakout in Energy Conversion (ACS, Washington, DC, USA. San Diego, CA, USA, 1986), pp. 935–940 J.D. Fish, D.C. Hawn, Closed loop thermochemical energy transport based on CO2 reforming of methane: Balancing the reaction systems, in Proceedings of the 21st Intersociety Energy Conversion Engineering Conference: Advancing toward Technology Breakout in Energy Conversion (ACS, Washington, DC, USA. San Diego, CA, USA, 1986), pp. 935–940
411.
Zurück zum Zitat V.I. Anikeev et al., Experimental study of a catalytic solar energy device based on a closed thermochemical cycle. Dokl. Chem. Technol. 292–294, 30–35 (1987) V.I. Anikeev et al., Experimental study of a catalytic solar energy device based on a closed thermochemical cycle. Dokl. Chem. Technol. 292–294, 30–35 (1987)
412.
Zurück zum Zitat V.I. Anikeev et al., Thermocatalytic solar-to-chemical energy transducer with a high energy-storage coefficient. Dokl. Chem. Technol. 289–291, 85–89 (1986) V.I. Anikeev et al., Thermocatalytic solar-to-chemical energy transducer with a high energy-storage coefficient. Dokl. Chem. Technol. 289–291, 85–89 (1986)
413.
Zurück zum Zitat T.A. Chubb, Solar thermochemical energy. European Space Agency, (Special Publication) ESA SP 1, 293–295 (1979) T.A. Chubb, Solar thermochemical energy. European Space Agency, (Special Publication) ESA SP 1, 293–295 (1979)
415.
Zurück zum Zitat T. Chubb, A chemical approach to solar energy. Chem. Tech. 6, 654–657 (1976) T. Chubb, A chemical approach to solar energy. Chem. Tech. 6, 654–657 (1976)
425.
Zurück zum Zitat D. Yıldız, How much will the renewables help for decarbonised future? World Water Dipl. Sci. News 10002, 16 (2018) D. Yıldız, How much will the renewables help for decarbonised future? World Water Dipl. Sci. News 10002, 16 (2018)
426.
Zurück zum Zitat J. Lattner, S. Stevenson, Renewable power for carbon dioxide mitigation. Chem. Eng. Prog. 54–58 (2021) J. Lattner, S. Stevenson, Renewable power for carbon dioxide mitigation. Chem. Eng. Prog. 54–58 (2021)
428.
Zurück zum Zitat H.M. Kvamsdal et al., Exergy analysis of gas-turbine combined cycle with CO2 capture using pre-combustion decarbonization of natural gas, in Proceedings of the American Society of Mechanical Engineers, vol. 2B (International Gas Turbine Institute, Turbo Expo, 2002), pp. 675–682. https://doi.org/10.1115/GT2002-30411 H.M. Kvamsdal et al., Exergy analysis of gas-turbine combined cycle with CO2 capture using pre-combustion decarbonization of natural gas, in Proceedings of the American Society of Mechanical Engineers, vol. 2B (International Gas Turbine Institute, Turbo Expo, 2002), pp. 675–682. https://​doi.​org/​10.​1115/​GT2002-30411
436.
438.
Zurück zum Zitat S. Hill et al., Net zero carbon buildings: three steps to take now. ARUP. (2020), p. 14 S. Hill et al., Net zero carbon buildings: three steps to take now. ARUP. (2020), p. 14
448.
Zurück zum Zitat D. Hall et al., Beyond road vehicles: Survey of zero-emission technology options across the transport sector. International Council on Clean Transportation Working Paper 2018 www.theicct.org, Working Paper 2018–11, p. 22 D. Hall et al., Beyond road vehicles: Survey of zero-emission technology options across the transport sector. International Council on Clean Transportation Working Paper 2018 www.​theicct.​org, Working Paper 2018–11, p. 22
458.
Zurück zum Zitat C. Stark et al., The Path to Net Zero (Climate Assembly, London, UK, 2020), p. 556 C. Stark et al., The Path to Net Zero (Climate Assembly, London, UK, 2020), p. 556
461.
Zurück zum Zitat IPCC, Climate change and land. Special Report. Intergovernmental Panel on Climate Change (IPCC). (Cambridge University Press, UK, 2020), p. 540 IPCC, Climate change and land. Special Report. Intergovernmental Panel on Climate Change (IPCC). (Cambridge University Press, UK, 2020), p. 540
Metadaten
Titel
Decarbonization
verfasst von
Maria Magdalena Ramirez-Corredores
Mireya R. Goldwasser
Eduardo Falabella de Sousa Aguiar
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-19999-8_2