skip to main content
10.1145/2470654.2466191acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Sublimate: state-changing virtual and physical rendering to augment interaction with shape displays

Authors Info & Claims
Published:27 April 2013Publication History

ABSTRACT

Recent research in 3D user interfaces pushes towards immersive graphics and actuated shape displays. Our work explores the hybrid of these directions, and we introduce sublimation and deposition, as metaphors for the transitions between physical and virtual states. We discuss how digital models, handles and controls can be interacted with as virtual 3D graphics or dynamic physical shapes, and how user interfaces can rapidly and fluidly switch between those representations. To explore this space, we developed two systems that integrate actuated shape displays and augmented reality (AR) for co-located physical shapes and 3D graphics. Our spatial optical see-through display provides a single user with head-tracked stereoscopic augmentation, whereas our handheld devices enable multi-user interaction through video seethrough AR. We describe interaction techniques and applications that explore 3D interaction for these new modalities. We conclude by discussing the results from a user study that show how freehand interaction with physical shape displays and co-located graphics can outperform wand-based interaction with virtual 3D graphics.

Skip Supplemental Material Section

Supplemental Material

chi1424-file3.mp4

mp4

21.8 MB

References

  1. Aksak, B., Bhat, P. S., Campbell, J., DeRosa, M., Funiak, S., Gibbons, P. B., Goldstein, S. C., Guestrin, C., Gupta, A., Helfrich, C., Hoburg, J., Kirby, B., Kuffner, J., Lee, P., Mowry, T. C., Pillai, P. S., Ravichandran, R., Rister, B. D., Seshan, S., Sitti, M., and Yu, H. Claytronics: highly scalable communications, sensing, and actuation networks. In SenSys '05 (2005), 299--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Anabuki, M., and Ishii, H. Ar-jig: A handheld tangible user interface for modification of 3d digital form via 2d physical curve. In ISMAR '07 (2007), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Benko, H., Jota, R., and Wilson, A. Miragetable: freehand interaction on a projected augmented reality tabletop. In CHI '12 (2012), 199--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bimber, O., Frohlich, B., Schmalsteig, D., and Encarnacao, L. The virtual showcase. Computer Graphics and Applications, IEEE 21, 6 (nov/dec 2001), 48--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bimber, O., and Raskar, R. Spatial augmented reality: merging real and virtual worlds. A. K. Peters, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Butler, A., Hilliges, O., Izadi, S., Hodges, S., Molyneaux, D., Kim, D., and Kong, D. Vermeer: direct interaction with a 360 deg viewable 3d display. In UIST '11 (2011), 569--576. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hachet, M., Bossavit, B., Cohé, A., and de la Rivière, J.-B. Toucheo: multitouch and stereo combined in a seamless workspace. In UIST '11 (2011), 587--592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Harrison, C., Benko, H., and Wilson, A. D. Omnitouch: wearable multitouch interaction everywhere. In UIST '11 (2011), 441--450. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hart, S. G., and Staveland, L. E. Development of nasa-tlx (task load index): Results of empirical and theoretical research. In Human Mental Workload, P. A. Hancock and N. Meshkati, Eds., vol. 52 of Advances in Psychology. North-Holland, 1988, 139--183.Google ScholarGoogle Scholar
  10. Hashimoto, S., Ishida, A., Inami, M., and Igarashi, T. Touchme: An augmented reality based remote robot manipulation. In ICAT2011 (2011).Google ScholarGoogle Scholar
  11. Henderson, S. J., and Feiner, S. Opportunistic controls: leveraging natural affordances as tangible user interfaces for augmented reality. In VRST '08 (2008), 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hilliges, O., Kim, D., Izadi, S., Weiss, M., and Wilson, A. Holodesk: direct 3d interactions with a situated see-through display. In CHI '12 (2012), 2421--2430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hoshi, T., Takahashi, M., Nakatsuma, K., and Shinoda, H. Touchable holography. In SIGGRAPH '09 (2009), 23:1--23:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ishii, H., Lakatos, D., Bonanni, L., and Labrune, J.-B. Radical atoms: beyond tangible bits, toward transformable materials. interactions 19, 1 (Jan. 2012), 38--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ishii, K., Zhao, S., Inami, M., Igarashi, T., and Imai, M. Designing laser gesture interface for robot control. In INTERACT '09 (2009), 479--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Iwata, H., Yano, H., Nakaizumi, F., and Kawamura, R. Project feelex: adding haptic surface to graphics. In SIGGRAPH '01 (2001), 469--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Leithinger, D., Lakatos, D., DeVincenzi, A., Blackshaw, M., and Ishii, H. Direct and gestural interaction with relief: a 2.5d shape display. In UIST '11 (2011), 541--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Massie, T., and Salisbury, K. The phantom haptic interface: A device for probing virtual objects. In ASME Winter Annual Meeting (1994).Google ScholarGoogle Scholar
  19. Olwal, A., Lindfors, C., Gustafsson, J., Kjellberg, T., and Mattsson, L. Astor: An autostereoscopic optical see-through augmented reality system. In ISMAR '05 (2005), 24--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Piper, B., Ratti, C., and Ishii, H. Illuminating clay: a 3-d tangible interface for landscape analysis. In CHI '02 (2002), 355--362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Plesniak, W., Pappu, R., and Benton, S. Haptic holography: a primitive computational plastic. Proceedings of the IEEE 91, 9 (sept. 2003), 1443--1456.Google ScholarGoogle ScholarCross RefCross Ref
  22. Poupyrev, I., Nashida, T., and Okabe, M. Actuation and tangible user interfaces: the vaucanson duck, robots, and shape displays. In TEI '07 (2007), 205--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Raskar, R., Welch, G., Low, K.-L., and Bandyopadhyay, D. Shader lamps: Animating real objects with image-based illumination. In Eurographics, Springer-Verlag (London, UK, 2001), 89--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rasmussen, M. K., Pedersen, E. W., Petersen, M. G., and Hornbaek, K. Shape-changing interfaces: a review of the design space and open research questions. In CHI '12 (2012), 735--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ratti, C., Wang, Y., Piper, B., Ishii, H., and Biderman, A. Phoxel-space: an interface for exploring volumetric data with physical voxels. In DIS '04 (2004), 289--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Reed, M. Prototyping digital clay as an active material. In Proceedings of the 3rd International Conference on Tangible and Embedded Interaction, TEI '09 (2009), 339--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Scharver, C., Evenhouse, R., Johnson, A., and Leigh, J. Designing cranial implants in a haptic augmented reality environment. Commun. ACM 47, 8 (Aug. 2004), 32--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Schmandt, C. Spatial input/display correspondence in a stereoscopic computer graphic work station. In SIGGRAPH '83 (1983), 253--261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Stevenson, D. R., Smith, K. A., McLaughlin, J. P., Gunn, C. J., Veldkamp, J. P., and Dixon, M. J. Haptic workbench: a multisensory virtual environment. SPIE 3639, Stereoscopic Displays and Virtual Reality Systems VI (1999), 356--366.Google ScholarGoogle ScholarCross RefCross Ref
  30. Sutherland, I. The ultimate display. In In International Federation of Information Processing (1965).Google ScholarGoogle Scholar
  31. Tani, M., Yamaashi, K., Tanikoshi, K., Futakawa, M., and Tanifuji, S. Object-oriented video: interaction with real-world objects through live video. In CHI '92 (1992), 593--598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Walairacht, S., Yamada, K., Hasegawa, S., Koike, Y., and Sato, M. 4 + 4 fingers manipulating virtual objects in mixed-reality environment. Presence: Teleoper. Virtual Environ. 11, 2 (Apr. 2002), 134--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yoshida, T., Kamuro, S., Minamizawa, K., Nii, H., and Tachi, S. Repro3d: full-parallax 3d display using retro-reflective projection technology. In SIGGRAPH '10 (2010), 20:1--20:1. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Sublimate: state-changing virtual and physical rendering to augment interaction with shape displays

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '13: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      April 2013
      3550 pages
      ISBN:9781450318990
      DOI:10.1145/2470654

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 April 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '13 Paper Acceptance Rate392of1,963submissions,20%Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader