skip to main content
research-article

Single-view hair modeling using a hairstyle database

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

Human hair presents highly convoluted structures and spans an extraordinarily wide range of hairstyles, which is essential for the digitization of compelling virtual avatars but also one of the most challenging to create. Cutting-edge hair modeling techniques typically rely on expensive capture devices and significant manual labor. We introduce a novel data-driven framework that can digitize complete and highly complex 3D hairstyles from a single-view photograph. We first construct a large database of manually crafted hair models from several online repositories. Given a reference photo of the target hairstyle and a few user strokes as guidance, we automatically search for multiple best matching examples from the database and combine them consistently into a single hairstyle to form the large-scale structure of the hair model. We then synthesize the final hair strands by jointly optimizing for the projected 2D similarity to the reference photo, the physical plausibility of each strand, as well as the local orientation coherency between neighboring strands. We demonstrate the effectiveness and robustness of our method on a variety of hairstyles and challenging images, and compare our system with state-of-the-art hair modeling algorithms.

Skip Supplemental Material Section

Supplemental Material

a125.mp4

mp4

31.3 MB

References

  1. Baltrusaitis, T., Robinson, P., and Morency, L.-P. 2013. Constrained local neural fields for robust facial landmark detection in the wild. In IEEE ICCVW, 354--361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Trans. Graph. 27, 3, 63:1--63:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévêque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. ACM Trans. Graph. 25, 3, 1180--1187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3d faces. In SIGGRAPH '99, 187--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bonneel, N., Paris, S., van de Panne, M., Durand, F., and Drettakis, G. 2009. Single photo estimation of hair appearance. In EGSR'09, 1171--1180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chai, M., Wang, L., Weng, Y., Yu, Y., Guo, B., and Zhou, K. 2012. Single-view hair modeling for portrait manipulation. ACM Trans. Graph. 31, 4, 116:1--116:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chai, M., Wang, L., Weng, Y., Jin, X., and Zhou, K. 2013. Dynamic hair manipulation in images and videos. ACM Trans. Graph. 32, 4, 75:1--75:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chai, M., Zheng, C., and Zhou, K. 2014. A reduced model for interactive hairs. ACM Trans. Graph. 33, 4, 124:1--124:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3D modeling. ACM Trans. Graphics 30, 4, 35:1--35:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chen, T., Cheng, M.-M., Tan, P., Shamir, A., and Hu, S.-M. 2009. Sketch2photo: Internet image montage. ACM Trans. Graph. 28, 5, 124:1--124:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cherin, N., Cordier, F., and Melkemi, M. 2014. Modeling piecewise helix curves from 2d sketches. Computer-Aided Design 46, 258--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Choe, B., and Ko, H.-S. 2005. A statistical wisp model and pseudophysical approaches for interactive hairstyle generation. IEEE Trans. Vis. Comput. Graph. 11, 2, 160--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Delong, A., Osokin, A., Isack, H. N., and Boykov, Y. 2012. Fast approximate energy minimization with label costs. International Journal of Computer Vision 96, 1, 1--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Derouet-Jourdan, A., Bertails-Descoubes, F., Daviet, G., and Thollot, J. 2013. Inverse dynamic hair modeling with frictional contact. ACM Trans. Graph. 32, 6, 159:1--159:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Echevarria, J. I., Bradley, D., Gutierrez, D., and Beeler, T. 2014. Capturing and stylizing hair for 3d fabrication. ACM Trans. Graph. 33, 4, 125:1--125:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Electronic Arts, 2014. The Sims Resource. http://www.thesimsresource.com/.Google ScholarGoogle Scholar
  17. Fu, H., Wei, Y., Tai, C.-L., and Quan, L. 2007. Sketching hairstyles. In SBIM '07, 31--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. ACM Trans. Graphics 23, 3, 652--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hu, L., Ma, C., Luo, L., and Li, H. 2014. Robust hair capture using simulated examples. ACM Trans. Graph. 33, 4, 126:1--126:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hu, L., Ma, C., Luo, L., Wei, L.-Y., and Li, H. 2014. Capturing braided hairstyles. ACM Trans. Graph. 33, 6, 225:1--225:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Huang, Z., Fu, H., and Lau, R. W. H. 2014. Data-driven segmentation and labeling of freehand sketches. ACM Trans. Graph. 33, 6, 175:1--175:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jakob, W., Moon, J. T., and Marschner, S. 2009. Capturing hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5, 164:1--164:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V. 2012. A probabilistic model for component-based shape synthesis. ACM Trans. Graph. 31, 4, 55:1--55:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kholgade, N., Simon, T., Efros, A., and Sheikh, Y. 2014. 3d object manipulation in a single photograph using stock 3d models. ACM Trans. Graph. 33, 4, 127:1--127:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kim, T.-Y., and Neumann, U. 2002. Interactive multiresolution hair modeling and editing. ACM Trans. Graph. 21, 3, 620--629. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lay Herrera, T., Zinke, A., and Weber, A. 2012. Lighting hair from the inside: A thermal approach to hair reconstruction. ACM Trans. Graph. 31, 6, 146:1--146:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In SIGGRAPH '00, 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Li, H., Adams, B., Guibas, L. J., and Pauly, M. 2009. Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5, 175:1--175:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Luo, L., Li, H., and Rusinkiewicz, S. 2013. Structure-aware hair capture. ACM Trans. Graph. 32, 4, 76:1--76:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Newsea, 2014. Newsea SIMS. http://www.newseasims.com/.Google ScholarGoogle Scholar
  31. Olsen, L., Samavati, F. F., Sousa, M. C., and Jorge, J. A. 2009. Sketch-based modeling: A survey. Computers & Graphics 33, 1, 85--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Paris, S., Chang, W., Kozhushnyan, O. I., Jarosz, W., Matusik, W., Zwicker, M., and Durand, F. 2008. Hair photobooth: Geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3, 30:1--30:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Shen, C.-H., Fu, H., Chen, K., and Hu, S.-M. 2012. Structure recovery by part assembly. ACM Trans. Graph. 31, 6, 180:1--180:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., and Blake, A. 2011. Real-time human pose recognition in parts from single depth images. In CVPR '11, 1297--1304. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Takayama, K., Panozzo, D., Sorkine-Hornung, A., and Sorkine-Hornung, O. 2013. Sketch-based generation and editing of quad meshes. ACM Trans. Graph. 32, 4, 97:1--97:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wang, R. Y., and Popović, J. 2009. Real-time hand-tracking with a color glove. ACM Trans. Graph. 28, 3, 63:1--63:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wang, L., Yu, Y., Zhou, K., and Guo, B. 2009. Example-based hair geometry synthesis. ACM Trans. Graph. 28, 3, 56:1--56:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P., and Lin, M. C. 2007. A survey on hair modeling: Styling, simulation, and rendering. IEEE TVCG 13, 2, 213--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Weng, Y., Wang, L., Li, X., Chai, M., and Zhou, K. 2013. Hair interpolation for portrait morphing. Computer Graphics Forum 32, 7, 79--84.Google ScholarGoogle ScholarCross RefCross Ref
  40. Wither, J., Bertails, F., and Cani, M.-P. 2007. Realistic hair from a sketch. In SMI '07, 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Xu, K., Zheng, H., Zhang, H., Cohen-Or, D., Liu, L., and Xiong, Y. 2011. Photo-inspired model-driven 3d object modeling. ACM Trans. Graph. 30, 4, 80:1--80:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Xu, K., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Fit and diverse: Set evolution for inspiring 3d shape galleries. ACM Trans. Graph. 31, 4, 57:1--57:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Xu, K., Chen, K., Fu, H., Sun, W.-L., and Hu, S.-M. 2013. Sketch2scene: Sketch-based co-retrieval and co-placement of 3d models. ACM Trans. Graph. 32, 4, 123:1--123:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Xu, B., Chang, W., Sheffer, A., Bousseau, A., McCrae, J., and Singh, K. 2014. True2form: 3d curve networks from 2d sketches via selective regularization. ACM Trans. Graph. 33, 4, 131:1--131:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Xu, Z., Wu, H.-T., Wang, L., Zheng, C., Tong, X., and Qi, Y. 2014. Dynamic hair capture using spacetime optimization. ACM Trans. Graph. 33, 6, 224:1--224:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Yu, X., Yu, Z., Chen, X., and Yu, J. 2014. A hybrid image-cad based system for modeling realistic hairstyles. In I3D '14, 63--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Yuksel, C., Schaefer, S., and Keyser, J. 2009. Hair meshes. ACM Trans. Graph. 28, 5, 166:1--166:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Zhou, S., Fu, H., Liu, L., Cohen-Or, D., and Han, X. 2010. Parametric reshaping of human bodies in images. ACM Trans. Graph. 29, 4, 126:1--126:10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Single-view hair modeling using a hairstyle database

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 4
        August 2015
        1307 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2809654
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2015
        Published in tog Volume 34, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader