skip to main content
10.1145/2786784.2786786acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Fully automatic generation of anatomical face simulation models

Published:07 August 2015Publication History

ABSTRACT

We present a fast, fully automatic morphing algorithm for creating simulatable flesh and muscle models for human and humanoid faces. Current techniques for creating such models require a significant amount of time and effort, making them infeasible or impractical. In fact, the vast majority of research papers use only a floating mask with no inner lips, teeth, tongue, eyelids, eyes, head, ears, etc.---and even those that build the full visual model would typically still lack the cranium, jaw, muscles, and other internal anatomy. Our method requires only the target surface mesh as input and can create a variety of models in only a few hours with no user interaction. We start with a symmetric, high resolution, anatomically accurate template model that includes auxiliary information such as feature points and curves. Then given a target mesh, we automatically orient it to the template, detect feature points, and use these to bootstrap the detection of corresponding feature curves. These curve correspondences are used to deform the surface mesh of the template model to match the target mesh. Then, the calculated displacements of the template surface mesh are used to drive a three-dimensional morph of the full template model including all interior anatomy. The resulting target model can be simulated to generate a large range of expressions that are consistent across characters using the same muscle activations. Full automation of this entire process makes it readily available to a wide range of users.

Skip Supplemental Material Section

Supplemental Material

References

  1. 3Lateral, 2015. 3Lateral Studio. 3lateral.com.Google ScholarGoogle Scholar
  2. Akimoto, T., Suenaga, Y., and Wallace, R. S. 1993. Automatic creation of 3d facial models. IEEE Comput. Graph. Appl. 13, 5 (Sept.), 16--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ali-Hamadi, D., Liu, T., Gilles, B., Kavan, L., Faure, F., Palombi, O., and Cani, M.-P. 2013. Anatomy transfer. In ACM SIGGRAPH Asia 2013 papers, SIGGRAPH ASIA '13, 188:1--188:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Autodesk, 2011. Face robot. http://softimage.wiki.softimage.com/xsidocs/face_cover.htm.Google ScholarGoogle Scholar
  5. Baraff, D., Witkin, A., and Kass, M. 2003. Untangling cloth. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 862--870. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Beeler, T., and Bradley, D. 2014. Rigid stabilization of facial expressions. ACM Trans. Graph. 33, 4 (July), 44:1--44:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Beeler, T., Bickel, B., Beardsley, P., Sumner, B., and Gross, M. 2010. High-quality single-shot capture of facial geometry. ACM Trans. Graph. (SIGGRAPH Proc.) 29, 3, 40:1--40:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R. W., and Gross, M. 2011. High-quality passive facial performance capture using anchor frames. ACM Trans. Graph. (SIGGRAPH Proc.) 30, 4, 75:1--75:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Besl, P. J., and McKay, N. D. 1992. Method for registration of 3-d shapes. In Robotics-DL tentative, International Society for Optics and Photonics, 586--606.Google ScholarGoogle Scholar
  10. Bhat, K. S., Goldenthal, R., Ye, Y., Mallet, R., and Koperwas, M. 2013. High fidelity facial animation capture and retargeting with contours. In ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 7--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Brown, B. J., and Rusinkiewicz, S. 2007. Global non-rigid alignment of 3-d scans. In ACM TOG, vol. 26, ACM, 21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fyffe, G., Jones, A., Alexander, O., Ichikari, R., and Debevec, P. 2015. Driving high-resolution facial scans with video performance capture. ACM TOG 34, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Garrido, P., Valgaerts, L., Wu, C., and Theobalt, C. 2013. Reconstructing detailed dynamic face geometry from monocular video. ACM Trans. Graph. 32, 6, 158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gibou, F., Fedkiw, R., Cheng, L.-T., and Kang, M. 2002. A second order accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176, 205--227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kemelmacher-Shlizerman, I., and Basri, R. 2011. 3d face reconstruction from a single image using a single reference face shape. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33, 2 (Feb), 394--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lewis, J. P., Anjyo, K., Rhee, T., Zhang, M., Pighin, F., and Deng, Z. 2014. Practice and Theory of Blendshape Facial Models. In Eurographics 2014 - State of the Art Reports, The Eurographics Association, S. Lefebvre and M. Spagnuolo, Eds.Google ScholarGoogle Scholar
  18. Li, H., Adams, B., Guibas, L. J., and Pauly, M. 2009. Robust single-view geometry and motion reconstruction. In ACM TOG, vol. 28, ACM, 175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Molino, N., Bridson, R., Teran, J., and Fedkiw, R. 2003. A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In 12th Int. Meshing Roundtable, 103--114.Google ScholarGoogle Scholar
  20. Noh, J., and Neumann, U. 2001. Expression cloning. In Proc. of ACM SIGGRAPH, ACM Press, E. Fiume, Ed., 277--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Osher, S., and Fedkiw, R. 2002. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag. New York, NY.Google ScholarGoogle Scholar
  22. Pauly, M., Mitra, N. J., Giesen, J., Gross, M., and Guibas, L. J. 2005. Example-based 3d scan completion. In Proceedings of the Third Eurographics Symposium on Geometry Processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SGP '05. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Qiu, L., Yu, Y., and Fedkiw, R. 2015. On thin gaps between rigid bodies two-way coupled to incompressible flow. J. Comput. Phys. 292, 0, 1--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Trans. Graph. (SIGGRAPH Proc.) 27, 3 (Aug.), 64.1--64.11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Shi, F., Wu, H.-T., Tong, X., and Chai, J. 2014. Automatic acquisition of high-fidelity facial performances using monocular videos. ACM Trans. Graph. 33, 6 (Nov.), 222:1--222:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sifakis, E., Selle, A., Robinson-Mosher, A., and Fedkiw, R. 2006. Simulating speech with a physics-based facial muscle model. ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 261--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sorkine, O., and Alexa, M. As-rigid-as-possible surface modeling.Google ScholarGoogle Scholar
  29. Sumner, R., and Popović, J. 2004. Deformation transfer for triangle meshes. In ACM Trans. on Graph. (Proc. ACM SIGGRAPH), vol. 23, 399--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Taubin, G. 1995. Estimating the tensor of curvature of a surface from a polyhedral approximation. ICCV, 902--907. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Teran, J., Blemker, S., Ng, V., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 68--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust quasistatic finite elements and flesh simulation. Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Zhang, L., Snavely, N., Curless, B., and Seitz, S. 2004. Spacetime faces: High resolution capture for modeling and animation. In ACM Trans. Graph. (Proc. ACM SIGGRAPH), ACM Press, vol. 23, 548--558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zhao, H.-K., Osher, S., and Fedkiw, R. 2001. Fast surface reconstruction using the level set method. In 1st IEEE Wrkshp. on Variational and Level Set Meth., 8th Int. Conf. on Comput. Vis., 194--202. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fully automatic generation of anatomical face simulation models

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SCA '15: Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation
      August 2015
      193 pages
      ISBN:9781450334969
      DOI:10.1145/2786784

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 August 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate183of487submissions,38%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader