skip to main content
research-article

Level-set-based partitioning and packing optimization of a printable model

Published:02 November 2015Publication History
Skip Abstract Section

Abstract

As the 3D printing technology starts to revolutionize our daily life and the manufacturing industries, a critical problem is about to e-merge: how can we find an automatic way to divide a 3D model into multiple printable pieces, so as to save the space, to reduce the printing time, or to make a large model printable by small printers. In this paper, we present a systematic study on the partitioning and packing of 3D models under the multi-phase level set framework. We first construct analysis tools to evaluate the qualities of a partitioning using six metrics: stress load, surface details, interface area, packed size, printability, and assembling. Based on this analysis, we then formulate level set methods to improve the qualities of the partitioning according to the metrics. These methods are integrated into an automatic system, which repetitively and locally optimizes the partitioning. Given the optimized partitioning result, we further provide a container structure modeling algorithm to facilitate the packing process of the printed pieces. Our experiment shows that the system can generate quality partitioning of various 3D models for space saving and fast production purposes.

Skip Supplemental Material Section

Supplemental Material

References

  1. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. (SIGGRAPH) 31, 4 (July), 47:1--47:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bacher, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-It: Optimizing moment of inertia for spinnable objects. ACM Trans. Graph. (SIGGRAPH) 33, 4 (August), 96:1--96:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3D-printing of non-assembly, articulated models. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6 (Nov.), 130:1--130:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3D mesh segmentation. ACM Trans. Graph. (SIGGRAPH) 28, 3 (July), 73:1--73:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chen, X., Zheng, C., Xu, W., and Zhou, K. 2014. An asymptotic numerical method for inverse elastic shape design. ACM Trans. Graph. (SIGGRAPH) 33, 4 (August), 95:1--95:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Deuss, M., Panozzo, D., Whiting, E., Liu, Y., Block, P., Sorkine-Hornung, O., and Pauly, M. 2014. Assembling self-supporting structures. ACM Trans. Graph. (SIGGRAPH Asia) 33, 6 (Nov.), 214:1--214:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dickinson, J. K., and Knopf, G. K. 1998. Serial packing of arbitrary 3D objects for optimizing layered manufacturing. In Procedings of SPIE 3522, Intelligent Robots and Computer Vision XVII: Algorithms, Techniques, and Active Vision.Google ScholarGoogle Scholar
  8. Dumas, J., Hergel, J., and Lefebvre, S. 2014. Bridging the gap: Automated steady scaffoldings for 3D printing. ACM Trans. Graph. (SIGGRAPH) 33, 4 (August), 98:1--98:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Egeblad, J., Nielsen, B. K., and Brazil, M. 2009. Translational packing of arbitrary polytopes. Computational Geometry 42, 4, 269--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 1 (Nov.), 83--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gibou, F., and Fedkiw, R. 2005. A fast hybrid k-means level set algorithm for segmentation. In 4th Annual Hawaii International Conference on Statistics and Mathematics, 281--291.Google ScholarGoogle Scholar
  12. Gomes, A. M., and Oliveira, J. F. 2006. Solving irregular strip packing problems by hybridising simulated annealing and linear programming. European Journal of Operational Research 171, 3, 811--829.Google ScholarGoogle ScholarCross RefCross Ref
  13. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Nonconvex rigid bodies with stacking. ACM Trans. Graph. (SIGGRAPH) 22, 3 (July), 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hu, R., Li, H., Zhang, H., and Cohen-Or, D. 2014. Approximate pyramidal shape decomposition. ACM Trans. Graph. (SIGGRAPH Asia) 33, 6 (Nov.), 213:1--213:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Imamichi, T., and Nagamochi, H. 2007. A multi-sphere scheme for 2D and 3D packing problems. In Proc. of SLS, 207--211. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Imamichi, T., Yagiura, M., and Nagamochi, H. 2009. An iterated local search algorithm based on nonlinear programming for the irregular strip packing problem. Discrete Optimization 6, 4, 345--361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Junior, B., Pinheiro, P., and Saraiva, R. 2013. Tackling the irregular strip packing problem by hybridizing genetic algorithm and bottom-left heuristic. In 2013 IEEE Congress on Evolutionary Computation, 3012--3018.Google ScholarGoogle Scholar
  18. Kim, B. 2010. Multi-phase fluid simulations using regional level sets. ACM Trans. Graph. (SIGGRAPH) 29, 6 (Dec.), 175:1--175:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3D furniture models to fabricatable parts and connectors. ACM Trans. Graph. (SIGGRAPH) 30, 4 (July), 85:1--85:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Li, H., Alhashim, I., Zhang, H., Shamir, A., and Cohen-Or, D. 2012. Stackabilization. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6 (Nov.), 158:1--158:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. (SIGGRAPH) 25, 3 (July), 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., and Chen, B. 2014. Build-to-last: Strength to weight 3D printed objects. ACM Trans. Graph. (SIGGRAPH) 33, 4 (August), 97:1--97:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. 2012. Chopper: Partitioning models into 3D-printable parts. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6 (Nov.), 129:1--129:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Trans. Graph. (SIGGRAPH) 24, 3 (July), 471--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Nooruddin, F. S., and Turk, G. 2003. Simplification and repair of polygonal models using volumetric techniques. IEEE Transactions on Visualization and Computer Graphics 9, 2, 191--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Novotni, M., and Klein, R. 2002. Computing geodesic distances on triangular meshes. In Proc. of WSCG, 341--347.Google ScholarGoogle Scholar
  27. Osher, S., and Sethian, J. A. 1988. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 1 (Nov.), 12--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Panozzo, D., Block, P., and Sorkine-Hornung, O. 2013. Designing unreinforced masonry models. ACM Trans. Graph. (SIGGRAPH) 32, 4 (July), 91:1--91:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ruuth, S. J. 1998. A diffusion-generated approach to multiphase motion. J. Comput. Phys. 145, 1 (Sept.), 166--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Saye, R. I., and Sethian, J. A. 2011. The Voronoi implicit interface method for computing multiphase physics. Proceedings of the National Academy of Sciences 108, 49, 19498--19503.Google ScholarGoogle ScholarCross RefCross Ref
  31. Shamir, A. 2008. A survey on mesh segmentation techniques. Comput. Graph. Forum 27, 6, 1539--1556.Google ScholarGoogle ScholarCross RefCross Ref
  32. Smith, K., Solis, F., and Chopp, D. 2002. A projection method for motion of triple junctions by level sets. Interfaces and Free Boundaries 4, 3Google ScholarGoogle Scholar
  33. Song, P., Fu, C.-W., and Cohen-Or, D. 2012. Recursive interlocking puzzles. ACM Trans. Graph. (SIGGRAPH) 31, 6 (Nov.), 128:1--128:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM Trans. Graph. (SIGGRAPH) 31, 4 (July), 48:1--48:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Telea, A., and Jalba, A. 2011. Voxel-based assessment of printability of 3D shapes. In Proc. of ISMM, 393--404. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Vanek, J., Galicia, J. A. G., Benes, B., Mch, R., Carr, N., Stava, O., and Miller, G. S. 2014. Packmerger: A 3D print volume optimizer. Computer Graphics Forum 33, 6 (Sept.), 322--332.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Vese, L. A., and Chan, T. F. 2002. A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vision 50, 3 (Dec.), 271--293. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., and Liu, X. 2013. Cost-effective printing of 3D objects with skin-frame structures. ACM Trans. Graph. (SIGGRAPH Asia) 32, 6 (Nov.), 177:1--177:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Whiting, E., Shin, H., Wang, R., Ochsendorf, J., and Durand, F. 2012. Structural optimization of 3D masonry buildings. ACM Trans. Graph (SIGGRAPH Asia). 31, 6 (Nov.), 159:1--159:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wu, S., Kay, M., King, R. E., Vila-Parrish, A., and Warsing, D. 2014. Multi-objective optimization of 3D packing problem in additive manufacturing. In Proceedings of the 2014 Industrial and Systems Engineering Research Conference.Google ScholarGoogle Scholar
  41. Xin, S., Lai, C.-F., Fu, C.-W., Wong, T.-T., He, Y., and Cohen-Or, D. 2011. Making burr puzzles from 3D models. ACM Trans. Graph. (SIGGRAPH) 30, 4 (July), 97:1--97:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yang, Y.-L., and Huang, Q.-X. 2013. Traygen: Arranging objects for exhibition and packaging. Comput. Graph. Forum (Pacific Graphics) 32, 7, 187--195.Google ScholarGoogle ScholarCross RefCross Ref
  43. Zhao, H.-K., Chan, T., Merriman, B., and Osher, S. 1996. A variational level set approach to multiphase motion. J. Comput. Phys. 127, 1 (Aug.), 179--195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zhou, Q., Panetta, J., and Zorin, D. 2013. Worst-case structural analysis. ACM Trans. Graph. (SIGGRAPH) 32, 4 (July), 137:1--137:12. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Level-set-based partitioning and packing optimization of a printable model

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 34, Issue 6
          November 2015
          944 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2816795
          Issue’s Table of Contents

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 November 2015
          Published in tog Volume 34, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader