skip to main content
10.1145/2984511.2984564acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article
Public Access

Wearables as Context for Guiard-abiding Bimanual Touch

Published:16 October 2016Publication History

ABSTRACT

We explore the contextual details afforded by wearable devices to support multi-user, direct-touch interaction on electronic whiteboards in a way that-unlike previous work-can be fully consistent with natural bimanual-asymmetric interaction as set forth by Guiard.

Our work offers the following key observation. While Guiard's framework has been widely applied in HCI, for bimanual interfaces where each hand interacts via direct touch, subtle limitations of multi-touch technologies as well as limitations in conception and design-mean that the resulting interfaces often cannot fully adhere to Guiard's principles even if they want to. The interactions are fundamentally ambiguous because the system does not know which hand, left or right, contributes each touch. But by integrating additional context from wearable devices, our system can identify which user is touching, as well as distinguish what hand they use to do so. This enables our prototypes to respect lateral preference the assignment of natural roles to each hand as advocated by Guiard in a way that has not been articulated before.

Skip Supplemental Material Section

Supplemental Material

uist3714-file3.mp4

mp4

61.7 MB

p287-webb.mp4

mp4

228.6 MB

References

  1. Adobe Illustrator. 2016. http://www.adobe.com/products/illustratorGoogle ScholarGoogle Scholar
  2. Annett, M., Grossman, T., Wigdor, D. and Fitzmaurice, G. Medusa: a proximity-aware multi-touch tabletop. In Proceedings of the 24th annual ACM symposium on User interface software and technology (2011). ACM, New York, NY, USA, 337--346. DOI=10.1145/2047196.2047240 http://doi.acm.org/10.1145/2047196.2047240 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Apple Watch. 2015. http://www.apple.com/watchGoogle ScholarGoogle Scholar
  4. Ardito, C., Buono, P., Costabile, M.F. and Desolda, G. Interaction with Large Displays: A Survey. ACM Computing Survey. 47, 3, Article 46 (February 2015), 38 pages. DOI=http://doi.acm.org/10.1145/2682623 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Azad, A., Ruiz, J., Vogel, D., Hancock, M., and Lank, E. Territoriality and behaviour on and around large vertical publicly-shared displays. In Proceedings of the Designing Interactive Systems Conference (2012). ACM, New York, NY, USA, 468--477. DOI=10.1145/2317956.2318025 http://doi.acm.org/10.1145/2317956.2318025 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Balakrishnan, R. and Hinckley, K. Symmetric bimanual interaction. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (2000). ACM, New York, NY, USA, 33--40. DOI=http://dx.doi.org/10.1145/332040.332404 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bau, O. and Mackay. W.E. OctoPocus: a dynamic guide for learning gesture-based command sets. In Proceedings of the 21st annual ACM symposium on User interface software and technology (2008). ACM, New York, NY, USA, 37--46. DOI=http://dx.doi.org/10.1145/1449715.1449724 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Beyer, H. and Holtzblatt, K. Contextual design. Interactions 6, 1 (January 1999), 32--42. DOI=10.1145/291224.291229 http://doi.acm.org/10.1145/291224.291229 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., and DeRose, T.D. Toolglass and magic lenses: the seethrough interface. In Proceedings of the 20th annual conference on Computer graphics and interactive techniques (1993). ACM, New York, NY, USA, 73--80. DOI=10.1145/166117.166126 http://doi.acm.org/10.1145/166117.166126 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Blažica, B., Vladušič, D., and Mladenić, D. MTi: A method for user identification for multitouch displays. International Journal of Human-Computer Studies. 71, 6 (June 2013), 691--702. DOI=10.1016/j.ijhcs.2013.03.002 http://dx.doi.org/10.1016/j.ijhcs.2013.03.002 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Brandl, P., Forlines, C., Wigdor, D., Haller, M., and Shen, C. Combining and measuring the benefits of bimanual pen and direct-touch interaction on horizontal interfaces. In Proceedings of the working conference on Advanced visual interfaces (2008). ACM, New York, NY, USA, 154--161. DOI=http://dx.doi.org/10.1145/1385569.1385595 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Buxton, B. Sketching User Experiences: getting the design right and the right design. 2007. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Buxton, W. Chunking and phrasing and the design of human-computer dialogues. In IFIP Congress, 1986, 475--480.Google ScholarGoogle Scholar
  14. Buxton, W., Fitzmaurice, G., Balakrishnan, R., and Kurtenbach, G. Large Displays in Automotive Design. IEEE Computer Graphics and Applications 20, 4 (July 2000), 68--75. DOI=10.1109/38.851753 http://dx.doi.org/10.1109/38.851753 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Buxton, W. and Myers, B. A study in two-handed input. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (1986), Marilyn Mantei and Peter Orbeton (Eds.). ACM, New York, NY, USA, 321--326. DOI=10.1145/22627.22390 http://doi.acm.org/10.1145/22627.22390 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Chatty, S. Extending a graphical toolkit for two-handed interaction. In Proceedings of the 7th annual ACM symposium on User interface software and technology (1994). ACM, New York, NY, USA, 195--204. DOI=http://dx.doi.org/10.1145/192426.192500 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Chen, X.A., Grossman, T., Wigdor, D.J., and Fitzmaurice, G. Duet: exploring joint interactions on a smart phone and a smart watch. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2014). ACM, New York, NY, USA, 159--168. DOI=http://dx.doi.org/10.1145/2556288.2556955 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Davidson, P.L. and Han, J.Y. Extending 2D object arrangement with pressure-sensitive layering cues. In Proceedings of the 21st annual ACM symposium on User interface software and technology (2008). ACM, New York, NY, USA, 87--90. DOI=10.1145/1449715.1449730 http://doi.acm.org/10.1145/1449715.1449730 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Dietz, P. and Leigh, D. DiamondTouch: a multi-user touch technology. In Proceedings of the 14th annual ACM symposium on User interface software and technology (2001). ACM, New York, NY, USA, 219226. DOI=10.1145/502348.502389 http://doi.acm.org/10.1145/502348.502389 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ewerling, P., Kulik, A., and Froehlich, B. Finger and hand detection for multi-touch interfaces based on maximally stable extremal regions. In Proceedings of the 2012 ACM international conference on Interactive tabletops and surfaces (2012). ACM, New York, NY, USA, 173--182. DOI=http://dx.doi.org/10.1145/2396636.2396663 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Fass, A., Forlizzi, J., and Pausch, R. MessyDesk and MessyBoard: two designs inspired by the goal of improving human memory. In Proceedings of the 4th conference on Designing interactive systems: processes, practices, methods, and techniques (2002). ACM, New York, NY, USA, 303--311. DOI=10.1145/778712.778754 http://doi.acm.org/10.1145/778712.778754 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Fitbit. 2016. https://www.fitbit.comGoogle ScholarGoogle Scholar
  23. Freeman, D., Benko, H., Morris, M.R., and Wigdor, D. ShadowGuides: visualizations for in-situ learning of multi-touch and whole-hand gestures. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces (2009). ACM, New York, NY, USA, 165--172. DOI=http://dx.doi.org/10.1145/1731903.1731935 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Garner, S., and McDonagh-Philp, D. Problem Interpretation and Resolution via Visual Stimuli: The Use of "Mood Boards" in Design Education. Journal of Art & Design Education, 2001, 20: 57--64. DOI=10.1111/1468--5949.00250Google ScholarGoogle ScholarCross RefCross Ref
  25. Ghomi, E., Huot, S., Bau, O., Beaudouin-Lafon, M., and Mackay, W.E. Arpège: learning multitouch chord gestures vocabularies. In Proceedings of the 2013 ACM international conference on Interactive tabletops and surfaces (2013). ACM, New York, NY, USA, 209--218. DOI=http://dx.doi.org/10.1145/2512349.2512795 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Greenberg, S., Marquardt, N., Ballendat, T., DiazMarino, R., and Wang, M. Proxemic interactions: the new ubicomp'. interactions 18, 1 (January 2011), 4250. DOI=http://dx.doi.org/10.1145/1897239.1897250 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Guiard, Y. Asymmetric division of labor in human skilled bimanual action: The kinematic chain as a model. In Journal of motor behavior, 1987, 19(4), 486--517. Google ScholarGoogle ScholarCross RefCross Ref
  28. Guimbretière, F., Stone, M., and Winograd, T. Fluid interaction with high-resolution wall-size displays. In Proceedings of the 14th annual ACM symposium on User interface software and technology (2001). ACM, New York, NY, USA, 21--30. DOI=10.1145/502348.502353 http://doi.acm.org/10.1145/502348.502353 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Guzdial, M. Software-realized scaffolding to facilitate programming for science learning. Interactive Learning Environments, 1994, 4(1), 001--044.Google ScholarGoogle ScholarCross RefCross Ref
  30. Hamilton, W., Kerne, A., and Robbins, T. Highperformance pen + touch modality interactions: a realtime strategy game eSports context. In Proceedings of the 25th annual ACM symposium on User interface software and technology (2012). ACM, New York, NY, USA, 309--318. DOI=10.1145/2380116.2380156 http://doi.acm.org/10.1145/2380116.2380156 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Harrison, C., Schwarz, J., and Hudson, S.E. TapSense: enhancing finger interaction on touch surfaces. In Proceedings of the 24th annual ACM symposium on User interface software and technology (2011). ACM, New York, NY, USA, 627--636. DOI=10.1145/2047196.2047279 http://doi.acm.org/10.1145/2047196.2047279 Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Hinckley, K., Pahud, M., Benko, H., Irani, P., Guimbretière, F., Gavriliu, M., Chen, X.A., Matulic, F., Buxton, W., and Wilson, A. 2014. Sensing techniques for tablet+stylus interaction. In Proceedings of the 27th annual ACM symposium on User interface software and technology (2014). ACM, New York, NY, USA, 605--614. DOI=10.1145/2642918.2647379 http://doi.acm.org/10.1145/2642918.2647379 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Hinckley, K., Yatani, K., Pahud, M., Coddington, N., Rodenhouse, J., Wilson, A., Benko, H., and Buxton, B. 2010. Pen + touch = new tools. In Proceedings of the 23nd annual ACM symposium on User interface software and technology (2010). ACM, New York, NY, USA, 27--36. DOI=10.1145/1866029.1866036 http://doi.acm.org/10.1145/1866029.1866036 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Hinrichs, U. and Carpendale, S. Gestures in the wild: studying multi-touch gesture sequences on interactive tabletop exhibits. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2011). ACM, New York, NY, USA, 30233032. DOI=10.1145/1978942.1979391 http://dx.doi.org/10.1145/1978942.1979391 Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Holz, C. and Baudisch, P. Fiberio: a touchscreen that senses fingerprints. InProceedings of the 26th annual ACM symposium on User interface software and technology (2013). ACM, New York, NY, USA, 41--50. DOI=http://dx.doi.org/10.1145/2501988.2502021 Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ju, W., Lee, B.A., and Klemmer, S.R. Range: exploring implicit interaction through electronic whiteboard design. In Proceedings of the 2008 ACM conference on Computer supported cooperative work (2008). ACM, New York, NY, USA, 17--26. DOI=10.1145/1460563.1460569 http://doi.acm.org/10.1145/1460563.1460569 Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Kabbash, P., Buxton, W., and Sellen, A. Two-handed input in a compound task. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (1994), Beth Adelson, Susan Dumais, and Judith Olson (Eds.). ACM, New York, NY, USA, 417--423. DOI=10.1145/191666.191808 http://doi.acm.org/10.1145/191666.191808 Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Kienzle, W. and Hinckley, K. LightRing: alwaysavailable 2D input on any surface. In Proceedings of the 27th annual ACM symposium on User interface software and technology (2014). ACM, New York, NY, USA, 157--160. DOI=http://dx.doi.org/10.1145/2642918.2647376 Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Kharrufa, A., Nicholson, J., Dunphy, P., Hodges, S., Briggs, P., and Olivier, P. Using IMUs to Identify Supervisors on Touch Devices. In INTERACT, 2015, Springer, 565--583. Google ScholarGoogle ScholarCross RefCross Ref
  40. Kurtenbach, G., Fitzmaurice, G., Baudel, T., and Buxton, B. The design of a GUI paradigm based on tablets, two-hands, and transparency. In Proceedings of the ACM SIGCHI Conference on Human factors in computing systems (1997). ACM, New York, NY, USA, 35--42. DOI=http://dx.doi.org/10.1145/258549.258574 Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Kurtenbach, G., Moran, T. P., & Buxton, W. Contextual animation of gestural commands. In Computer Graphics Forum, December 1994, 13(5), Blackwell Science Ltd. Google ScholarGoogle ScholarCross RefCross Ref
  42. Latulipe, C., Mann, S., Kaplan, C.S., and Clarke, C.L.A. symSpline: symmetric two-handed spline manipulation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2006), Rebecca Grinter, Thomas Rodden, Paul Aoki, Ed Cutrell, Robin Jeffries, and Gary Olson (Eds.). ACM, New York, NY, USA, 349--358. DOI=http://dx.doi.org/10.1145/1124772.1124825 Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Leganchuk, A., Zhai, S., and Buxton, W. Manual and cognitive benefits of two-handed input: an experimental study. ACM Transactions on ComputerHuman Interaction. 5, 4 (December 1998), 326--359. DOI=10.1145/300520.300522 http://doi.acm.org/10.1145/300520.300522 Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Li, F.C.Y., Guy, R.T., Yatani, K., and Truong, K.N. The 1line keyboard: a QWERTY layout in a single line. In Proceedings of the 24th annual ACM symposium on User interface software and technology (2011). ACM, New York, NY, USA, 461--470. DOI=10.1145/2047196.2047257 http://doi.acm.org/10.1145/2047196.2047257 Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Lucero, A. Framing, aligning, paradoxing, abstracting, and directing: how design mood boards work. In Proceedings of the Designing Interactive Systems Conference (2012). ACM, New York, NY, USA, 438447. DOI=10.1145/2317956.2318021 http://doi.acm.org/10.1145/2317956.2318021 Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Lucero, A., Aliakseyeu, D., and Martens, J.B. Funky wall: presenting mood boards using gesture, speech and visuals. In Proceedings of the working conference on Advanced visual interfaces (2008). ACM, New York, NY, USA, 425--428. DOI=10.1145/1385569.1385650 http://doi.acm.org/10.1145/1385569.1385650 Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Marquardt, N., Kiemer, J., and Greenberg, S. What caused that touch': expressive interaction with a surface through fiduciary-tagged gloves. In ACM International Conference on Interactive Tabletops and Surfaces (2010). ACM, New York, NY, USA, 139142. DOI=10.1145/1936652.1936680 http://doi.acm.org/10.1145/1936652.1936680 Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Mare, S., Markham, A.M., Cornelius, C., Peterson, R., and Kotz, D. ZEBRA: zero-effort bilateral recurring authentication. In IEEE Symposium on Security and Privacy (SP), 2014, IEEE 705--720. DOI=10.1109/SP.2014.51 Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Matulic, F. and Norrie, M.C. Pen and touch gestural environment for document editing on interactive tabletops. In Proceedings of the ACM international conference on Interactive tabletops and surfaces (2013). ACM, New York, NY, USA, 41--50. DOI=10.1145/2512349.2512802 http://doi.acm.org/10.1145/2512349.2512802 Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Microsoft Band. 2016. http://www.microsoft.com/microsoft-bandGoogle ScholarGoogle Scholar
  51. Morris, M.R., Huang, A., Paepcke, A., and Winograd, T. Cooperative gestures: multi-user gestural interactions for co-located groupware. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2006), Rebecca Grinter, Thomas Rodden, Paul Aoki, Ed Cutrell, Robin Jeffries, and Gary Olson (Eds.). ACM, New York, NY, USA, 1201--1210. DOI=http://dx.doi.org/10.1145/1124772.1124952 Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Mynatt, E.D., Igarashi, T., Edwards, W.K., and LaMarca, A. Flatland: new dimensions in office whiteboards. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (1999). ACM, New York, NY, USA, 346--353. DOI=10.1145/302979.303108 http://doi.acm.org/10.1145/302979.303108 Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Ogata, M., Sugiura, Y., Osawa, H., and Imai, M. iRing: intelligent ring using infrared reflection. In Proceedings of the 25th annual ACM symposium on User interface software and technology (2012). ACM, New York, NY, USA, 131--136. DOI=http://dx.doi.org/10.1145/2380116.2380135 Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Pedersen, E.R., McCall, K., Moran, T.P., and Halasz, F.G. Tivoli: an electronic whiteboard for informal workgroup meetings. In Proceedings of the Conference on Human Factors in Computing Systems (1993). ACM, New York, NY, USA, 391--398. DOI=10.1145/169059.169309 http://doi.acm.org/10.1145/169059.169309 Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Ramakers, R., Vanacken, D., Luyten, K., Coninx, K., and Schöning, J. Carpus: a non-intrusive user identification technique for interactive surfaces. In Proceedings of the 25th annual ACM symposium on User interface software and technology (2012). ACM, New York, NY, USA, 35--44. DOI=10.1145/2380116.2380123 http://doi.acm.org/10.1145/2380116.2380123 Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Ramos, G., Robertson, G., Czerwinski, M., Tan, D., Baudisch, P., Hinckley, K., and Agrawala, M. Tumble! Splat! helping users access and manipulate occluded content in 2D drawings. In Proceedings of the working conference on Advanced visual interfaces (2006). ACM, New York, NY, USA, 428--435. DOI=10.1145/1133265.1133351 http://doi.acm.org/10.1145/1133265.1133351 Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Rofouei, M., Wilson, A., Brush, A.J., and Tansley. S. Your phone or mine': fusing body, touch and device sensing for multi-user device-display interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2012). ACM, New York, NY, USA, 1915--1918. DOI=http://dx.doi.org/10.1145/2207676.2208332 Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Strange, A. Wear this Bluetooth Ring to Control All Your Devices With Your Finger, 2014, http://mashable.com/2014/04/29/nod-bluetooth-ring/Google ScholarGoogle Scholar
  59. Vogel, D. and Balakrishnan, R. Interactive public ambient displays: transitioning from implicit to explicit, public to personal, interaction with multiple users. In Proceedings of the 17th annual ACM symposium on User interface software and technology (2004). ACM, New York, NY, USA, 137--146. DOI=10.1145/1029632.1029656 http://doi.acm.org/10.1145/1029632.1029656 Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Vogel, D. and Casiez, G. Conté: multimodal input inspired by an artist's crayon. In Proceedings of the 24th annual ACM symposium on User interface software and technology (2011). ACM, New York, NY, USA, 357--366. DOI=http://dx.doi.org/10.1145/2047196.2047242 Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Weiser, M. The computer for the 21st century. Scientific American, 1991, 265(3), 94--104. Google ScholarGoogle ScholarCross RefCross Ref
  62. Wigdor, D. and Wixon, D. Design Guidelines: SelfRevealing Multi-Touch Gestures. Brave NUI world: designing natural user interfaces for touch and gesture, 2011, Elsevier: 150--154.Google ScholarGoogle Scholar
  63. Wilkinson, G., Kharrufa, A., Hook, J., Pursglove, B., Wood, G., Haeuser, H., Hammerla, N.Y., Hodges, S., and Olivier, P. Expressy: Using a Wrist-worn Inertial Measurement Unit to Add Expressiveness to Touchbased Interactions. In Proceedings of the CHI Conference on Human Factors in Computing Systems (2016). ACM, New York, NY, USA, 2832--2844. DOI: http://dx.doi.org/10.1145/2858036.2858223 Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Wu, M., and Balakrishnan, R. Multi-finger and whole hand gestural interaction techniques for multi-user tabletop displays. In Proceedings of the 16th annual ACM symposium on User interface software and technology (2003). ACM, New York, NY, USA, 193--202. DOI=10.1145/964696.964718 http://doi.acm.org/10.1145/964696.964718 Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Yang, X.D., Grossman, T., Wigdor, D., and Fitzmaurice, G. Magic finger: always-available input through finger instrumentation. In Proceedings of the 25th annual ACM symposium on User interface software and technology (2012). ACM, New York, NY, USA, 147--156. DOI=10.1145/2380116.2380137 http://doi.acm.org/10.1145/2380116.2380137 Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Zhang, H., Yang, X.D., Ens, B., Liang, H.N., Boulanger, P., and Irani, P. See me, see you: a lightweight method for discriminating user touches on tabletop displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2012). ACM, New York, NY, USA, 2327--2336. DOI=10.1145/2207676.2208392 http://doi.acm.org/10.1145/2207676.2208392 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Wearables as Context for Guiard-abiding Bimanual Touch

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '16: Proceedings of the 29th Annual Symposium on User Interface Software and Technology
      October 2016
      908 pages
      ISBN:9781450341899
      DOI:10.1145/2984511

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 16 October 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '16 Paper Acceptance Rate79of384submissions,21%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader