skip to main content
10.1145/3491102.3501939acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Open Access

Making Data Tangible: A Cross-disciplinary Design Space for Data Physicalization

Authors Info & Claims
Published:28 April 2022Publication History

ABSTRACT

Designing a data physicalization requires a myriad of different considerations. Despite the cross-disciplinary nature of these considerations, research currently lacks a synthesis across the different communities data physicalization sits upon, including their approaches, theories, and even terminologies. To bridge these communities synergistically, we present a design space that describes and analyzes physicalizations according to three facets: context (end-user considerations), structure (the physical structure of the artifact), and interactions (interactions with both the artifact and data). We construct this design space through a systematic review of 47 physicalizations and analyze the interrelationships of key factors when designing a physicalization. This design space cross-pollinates knowledge from relevant HCI communities, providing a cohesive overview of what designers should consider when creating a data physicalization while suggesting new design possibilities. We analyze the design decisions present in current physicalizations, discuss emerging trends, and identify underlying open challenges.

Skip Supplemental Material Section

Supplemental Material

3491102.3501939-talk-video.mp4

mp4

172 MB

3491102.3501939-video-preview.mp4

mp4

17.5 MB

References

  1. Oscar Alvarado, Vero Vanden Abeele, David Geerts, Francisco Gutiérrez, and Katrien Verbert. 2021. Exploring Tangible Algorithmic Imaginaries in Movie Recommendations. In Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction(Salzburg, Austria) (TEI ’21). Association for Computing Machinery, New York, NY, USA, Article 12, 12 pages. https://doi.org/10.1145/3430524.3440631Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ilhan Aslan, Andreas Seiderer, Chi Tai Dang, Simon Rädler, and Elisabeth André. 2020. PiHearts: Resonating Experiences of Self and Others Enabled by a Tangible Somaesthetic Design. In Proceedings of the 2020 International Conference on Multimodal Interaction (Virtual Event, Netherlands) (ICMI ’20). Association for Computing Machinery, New York, NY, USA, 433–441. https://doi.org/10.1145/3382507.3418848Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Christoph Bader, Dominik Kolb, James C Weaver, Sunanda Sharma, Ahmed Hosny, João Costa, and Neri Oxman. 2018. Making data matter: Voxel printing for the digital fabrication of data across scales and domains. Science advances 4, 5 (2018), eaas8652.Google ScholarGoogle Scholar
  4. Andrea Batch, Biswaksen Patnaik, Moses Akazue, and Niklas Elmqvist. 2020. Scents and Sensibility: Evaluating Information Olfactation. Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376733Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Michel Beaudouin-Lafon. 2004. Designing Interaction, Not Interfaces. In Proceedings of the Working Conference on Advanced Visual Interfaces (Gallipoli, Italy) (AVI ’04). Association for Computing Machinery, New York, NY, USA, 15–22. https://doi.org/10.1145/989863.989865Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Alberto Boem and Hiroo Iwata. 2018. “It’s like holding a human heart”: the design of Vital+ Morph, a shape-changing interface for remote monitoring. AI & SOCIETY 33, 4 (2018), 599–619.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Sean Braley, Calvin Rubens, Timothy Merritt, and Roel Vertegaal. 2018. GridDrones: A Self-Levitating Physical Voxel Lattice for Interactive 3D Surface Deformations. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin, Germany) (UIST ’18). Association for Computing Machinery, New York, NY, USA, 87–98. https://doi.org/10.1145/3242587.3242658Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Matthew Brehmer and Tamara Munzner. 2013. A multi-level typology of abstract visualization tasks. IEEE transactions on visualization and computer graphics 19, 12(2013), 2376–2385.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. N. Bressa, H. Korsgaard, A. Tabard, S. Houben, and J. Vermeulen. 2022. What’s the Situation with Situated Visualization? A Survey and Perspectives on Situatedness. IEEE Transactions on Visualization & Computer Graphics 28, 01 (jan 2022), 107–117. https://doi.org/10.1109/TVCG.2021.3114835Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. Card, J.D. Mackinlay, and B. Shneiderman. 1999. Readings in Information Visualization: Using Vision to Think. Technical Communication Quarterly 9, 3 (1999), 347–351.Google ScholarGoogle Scholar
  11. Matthew Chalmers. 2004. A historical view of context. Computer Supported Cooperative Work (CSCW) 13, 3-4 (2004), 223–247.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Sandy Claes and Andrew Vande Moere. 2015. The Role of Tangible Interaction in Exploring Information on Public Visualization Displays. In Proceedings of the 4th International Symposium on Pervasive Displays (Saarbruecken, Germany) (PerDis ’15). Association for Computing Machinery, New York, NY, USA, 201–207. https://doi.org/10.1145/2757710.2757733Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Maxime Daniel, Guillaume Rivière, and Nadine Couture. 2019. CairnFORM: A Shape-Changing Ring Chart Notifying Renewable Energy Availability in Peripheral Locations. In Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction (Tempe, Arizona, USA) (TEI ’19). Association for Computing Machinery, New York, NY, USA, 275–286. https://doi.org/10.1145/3294109.3295634Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Audrey Desjardins and Timea Tihanyi. 2019. ListeningCups: A Case of Data Tactility and Data Stories. In Proceedings of the 2019 on Designing Interactive Systems Conference (San Diego, CA, USA) (DIS ’19). Association for Computing Machinery, New York, NY, USA, 147–160. https://doi.org/10.1145/3322276.3323694Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. H. Djavaherpour, F. Samavati, A. Mahdavi-Amiri, F. Yazdanbakhsh, S. Huron, R. Levy, Y. Jansen, and L. Oehlberg. 2021. Data to Physicalization: A Survey of the Physical Rendering Process. Computer Graphics Forum 40, 3 (2021), 569–598. https://doi.org/10.1111/cgf.14330Google ScholarGoogle ScholarCross RefCross Ref
  16. Paul Dourish. 2001. Where the Action is: The Foundations of Embodied Interaction. MIT Press, Cambridge, MA, USA.Google ScholarGoogle Scholar
  17. Pierre Dragicevic and Yvonne Jansen. [n.d.]. Ammassalik Wooden Maps. http://dataphys.org/list/ammassalik-wooden-maps/. Accessed: 2021-08-29.Google ScholarGoogle Scholar
  18. Pierre Dragicevic and Yvonne Jansen. [n.d.]. Marshall Islands Stick Charts. http://dataphys.org/list/marshall-islands-stick-charts/. Accessed: 2021-08-29.Google ScholarGoogle Scholar
  19. Pierre Dragicevic, Yvonne Jansen, and Andrew Vande Moere. 2020. Data Physicalization. Springer International Publishing, Cham, 1–51. https://doi.org/10.1007/978-3-319-27648-9_94-1Google ScholarGoogle ScholarCross RefCross Ref
  20. Neven ElSayed, Bruce Thomas, Kim Marriott, Julia Piantadosi, and Ross Smith. 2015. Situated analytics. In 2015 Big Data Visual Analytics (BDVA). IEEE, 1–8.Google ScholarGoogle Scholar
  21. Chris Elsden, David Kirk, Mark Selby, and Chris Speed. 2015. Beyond Personal Informatics: Designing for Experiences with Data. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI EA ’15). Association for Computing Machinery, New York, NY, USA, 2341–2344. https://doi.org/10.1145/2702613.2702632Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Omid Ettehadi, Fraser Anderson, Adam Tindale, and Sowmya Somanath. 2021. Documented: Embedding Information onto and Retrieving Information from 3D Printed Objects. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, Article 424, 11 pages. https://doi.org/10.1145/3411764.3445551Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Aluna Everitt and Jason Alexander. 2017. PolySurface: A Design Approach for Rapid Prototyping of Shape-Changing Displays Using Semi-Solid Surfaces. In Proceedings of the 2017 Conference on Designing Interactive Systems (Edinburgh, United Kingdom) (DIS ’17). Association for Computing Machinery, New York, NY, USA, 1283–1294. https://doi.org/10.1145/3064663.3064677Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. George W. Fitzmaurice. 1996. Graspable User Interfaces. Ph.D. Dissertation. University of Toronto, CAN. Advisor(s) Buxton, William. AAINN18871.Google ScholarGoogle Scholar
  25. Mikhaila Friske, Jordan Wirfs-Brock, and Laura Devendorf. 2020. Entangling the Roles of Maker and Interpreter in Interpersonal Data Narratives: Explorations in Yarn and Sound. In Proceedings of the 2020 ACM Designing Interactive Systems Conference. Association for Computing Machinery, New York, NY, USA, 297–310. https://doi.org/10.1145/3357236.3395442Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Alexandra Gendreau Chakarov, Quentin Biddy, Jennifer Jacobs, Mimi Recker, and Tamara Sumner. 2020. Opening the Black Box: Investigating Student Understanding of Data Displays Using Programmable Sensor Technology. In Proceedings of the 2020 ACM Conference on International Computing Education Research (Virtual Event, New Zealand) (ICER ’20). Association for Computing Machinery, New York, NY, USA, 291–301. https://doi.org/10.1145/3372782.3406268Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Pauline Gourlet and Thierry Dassé. 2017. Cairn: A Tangible Apparatus for Situated Data Collection, Visualization and Analysis. In Proceedings of the 2017 Conference on Designing Interactive Systems (Edinburgh, United Kingdom) (DIS ’17). Association for Computing Machinery, New York, NY, USA, 247–258. https://doi.org/10.1145/3064663.3064794Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Shad Gross, Jeffrey Bardzell, and Shaowen Bardzell. 2014. Structures, forms, and stuff: the materiality and medium of interaction. Personal and Ubiquitous Computing 18, 3 (2014), 637–649.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Darren Guinness, Annika Muehlbradt, Daniel Szafir, and Shaun K. Kane. 2019. RoboGraphics: Dynamic Tactile Graphics Powered by Mobile Robots. In The 21st International ACM SIGACCESS Conference on Computers and Accessibility (Pittsburgh, PA, USA) (ASSETS ’19). Association for Computing Machinery, New York, NY, USA, 318–328. https://doi.org/10.1145/3308561.3353804Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Kenya Hara. 2007. Designing design. Lars Müller Publishers.Google ScholarGoogle Scholar
  31. Rex Hartson. 2003. Cognitive, physical, sensory, and functional affordances in interaction design. Behaviour & Information Technology 22, 5 (2003), 315–338. https://doi.org/10.1080/01449290310001592587Google ScholarGoogle ScholarCross RefCross Ref
  32. Trevor Hogan and Eva Hornecker. 2012. How Does Representation Modality Affect User-Experience of Data Artifacts?. In Haptic and Audio Interaction Design, Charlotte Magnusson, Delphine Szymczak, and Stephen Brewster (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 141–151.Google ScholarGoogle Scholar
  33. Eva Hornecker. 2005. A Design Theme for Tangible Interaction: Embodied Facilitation. In ECSCW 2005, Hans Gellersen, Kjeld Schmidt, Michel Beaudouin-Lafon, and Wendy Mackay (Eds.). Springer Netherlands, Dordrecht, 23–43.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Steven Houben, Connie Golsteijn, Sarah Gallacher, Rose Johnson, Saskia Bakker, Nicolai Marquardt, Licia Capra, and Yvonne Rogers. 2016. Physikit: Data Engagement Through Physical Ambient Visualizations in the Home. Association for Computing Machinery, New York, NY, USA, 1608–1619. https://doi.org/10.1145/2858036.2858059Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Noura Howell, Laura Devendorf, Tomás Alfonso Vega Gálvez, Rundong Tian, and Kimiko Ryokai. 2018. Tensions of Data-Driven Reflection: A Case Study of Real-Time Emotional Biosensing. Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3174005Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Carmen Hull and Wesley Willett. 2017. Building with Data: Architectural Models as Inspiration for Data Physicalization. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 1217–1264. https://doi.org/10.1145/3025453.3025850Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Hiroshi Ishii, Dávid Lakatos, Leonardo Bonanni, and Jean-Baptiste Labrune. 2012. Radical Atoms: Beyond Tangible Bits, toward Transformable Materials. Interactions 19, 1 (Jan. 2012), 38–51. https://doi.org/10.1145/2065327.2065337Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Hiroshi Ishii and Brygg Ullmer. 1997. Tangible Bits: Towards Seamless Interfaces between People, Bits and Atoms. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’97). Association for Computing Machinery, New York, NY, USA, 234–241. https://doi.org/10.1145/258549.258715Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yvonne Jansen, Pierre Dragicevic, and Jean-Daniel Fekete. 2013. Evaluating the Efficiency of Physical Visualizations. Association for Computing Machinery, New York, NY, USA, 2593–2602. https://doi.org/10.1145/2470654.2481359Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Yvonne Jansen, Pierre Dragicevic, Petra Isenberg, Jason Alexander, Abhijit Karnik, Johan Kildal, Sriram Subramanian, and Kasper Hornbæk. 2015. Opportunities and Challenges for Data Physicalization. Association for Computing Machinery, New York, NY, USA, 3227–3236. https://doi.org/10.1145/2702123.2702180Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Yvonne Jansen and Kasper Hornbæk. 2015. A psychophysical investigation of size as a physical variable. IEEE transactions on visualization and computer graphics 22, 1(2015), 479–488.Google ScholarGoogle Scholar
  42. Yvonne Jansen and Kasper Hornbæk. 2016. A Psychophysical Investigation of Size as a Physical Variable. IEEE Transactions on Visualization and Computer Graphics 22, 1(2016), 479–488. https://doi.org/10.1109/TVCG.2015.2467951Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ana Jofre, Steve Szigeti, Stephen Tiefenbach Keller, Lan-Xi Dong, David Czarnowski, Frederico Tomé, and Sara Diamond. 2015. A Tangible User Interface for Interactive Data Visualization. In Proceedings of the 25th Annual International Conference on Computer Science and Software Engineering(Markham, Canada) (CASCON ’15). IBM Corp., USA, 244–247.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Jan Joosten. 1996. Denise Schmandt-Besserat, How Writing Came About. University of Texas Press, Austin, TX, USA.Google ScholarGoogle Scholar
  45. Somi Ju, Kyung-Ryong Lee, Subin Kim, and Young-Woo Park. 2019. Bookly: An Interactive Everyday Artifact Showing the Time of Physically Accumulated Reading Activity. Association for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3290605.3300614Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Matej Kaninsky, Sarah Gallacher, and Yvonne Rogers. 2018. Confronting People’s Fears about Bats: Combining Multi-Modal and Environmentally Sensed Data to Promote Curiosity and Discovery. In Proceedings of the 2018 Designing Interactive Systems Conference (Hong Kong, China) (DIS ’18). Association for Computing Machinery, New York, NY, USA, 931–943. https://doi.org/10.1145/3196709.3196783Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Hans G Kaper, Elizabeth Wiebel, and Sever Tipei. 1999. Data sonification and sound visualization. Computing in science & engineering 1, 4 (1999), 48–58.Google ScholarGoogle Scholar
  48. Maria Karyda, Elisa D Mekler, and Andrés Lucero. 2021. Data Agents: Promoting Reflection through Meaningful Representations of Personal Data in Everyday Life. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, Article 367, 11 pages. https://doi.org/10.1145/3411764.3445112Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Maria Karyda, Danielle Wilde, and Mette Gislev Kjærsgaard. 2020. Narrative Physicalization: Supporting Interactive Engagement With Personal Data. IEEE Computer Graphics and Applications 41, 1 (2020), 74–86.Google ScholarGoogle ScholarCross RefCross Ref
  50. Rohit Ashok Khot, Deepti Aggarwal, Ryan Pennings, Larissa Hjorth, and Florian ’Floyd’ Mueller. 2017. EdiPulse: Investigating a Playful Approach to Self-Monitoring through 3D Printed Chocolate Treats. Association for Computing Machinery, New York, NY, USA, 6593–6607. https://doi.org/10.1145/3025453.3025980Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Rohit Ashok Khot, Josh Andres, Jennifer Lai, Juerg von Kaenel, and Florian ’Floyd’ Mueller. 2016. Fantibles: Capturing Cricket Fan’s Story in 3D. In Proceedings of the 2016 ACM Conference on Designing Interactive Systems (Brisbane, QLD, Australia) (DIS ’16). Association for Computing Machinery, New York, NY, USA, 883–894. https://doi.org/10.1145/2901790.2901886Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. K. Krippendorff. 2004. Content Analysis: An Introduction to Its Methodology. Sage. https://books.google.com/books?id=q657o3M3C8cCGoogle ScholarGoogle Scholar
  53. Susan Kuchera. 2018. The Weavers and Their Information Webs: Steganography in the Textile Arts. Ada: A Journal of Gender, New Media, and Technology 13 (2018). https://doi.org/10.5399/uo/ada.2018.13.9Google ScholarGoogle ScholarCross RefCross Ref
  54. Ebru Kurbak. 2018. Stitching Worlds: Exploring Textiles and Electronics. Revolver Publishing, Berlin.Google ScholarGoogle Scholar
  55. Mathieu Le Goc, Lawrence H. Kim, Ali Parsaei, Jean-Daniel Fekete, Pierre Dragicevic, and Sean Follmer. 2016. Zooids: Building Blocks for Swarm User Interfaces. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). Association for Computing Machinery, New York, NY, USA, 97–109. https://doi.org/10.1145/2984511.2984547Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Mathieu Le Goc, Charles Perin, Sean Follmer, Jean-Daniel Fekete, and Pierre Dragicevic. 2018. Dynamic composite data physicalization using wheeled micro-robots. IEEE Transactions on Visualization and Computer Graphics 25, 1(2018), 737–747.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Kyung-Ryong Lee, Somi Ju, Temirlan Dzhoroev, Geonil Goh, Moon-Hwan Lee, and Young-Woo Park. 2020. DayClo: An Everyday Table Clock Providing Interaction with Personal Schedule Data for Self-Reflection. Association for Computing Machinery, New York, NY, USA, 1793–1806. https://doi.org/10.1145/3357236.3395439Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Kyung-Ryong Lee, Beom Kim, Junyoung Kim, Hwajung Hong, and Young-Woo Park. 2021. ADIO: An Interactive Artifact Physically Representing the Intangible Digital Audiobook Listening Experience in Everyday Living Spaces. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, Article 164, 12 pages. https://doi.org/10.1145/3411764.3445440Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Joanne Lo, Doris Jung Lin Lee, Nathan Wong, David Bui, and Eric Paulos. 2016. Skintillates: Designing and Creating Epidermal Interactions. In Proceedings of the 2016 ACM Conference on Designing Interactive Systems (Brisbane, QLD, Australia) (DIS ’16). Association for Computing Machinery, New York, NY, USA, 853–864. https://doi.org/10.1145/2901790.2901885Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Dan Lockton, Tammar Zea-Wolfson, Jackie Chou, Yuhan (Antonio) Song, Erin Ryan, and CJ Walsh. 2020. Sleep Ecologies: Tools for Snoozy Autoethnography. Association for Computing Machinery, New York, NY, USA, 1579–1591. https://doi.org/10.1145/3357236.3395482Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Irene López García and Eva Hornecker. 2021. Scaling Data Physicalization – How Does Size Influence Experience?. In Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction (Salzburg, Austria) (TEI ’21). Association for Computing Machinery, New York, NY, USA, Article 8, 14 pages. https://doi.org/10.1145/3430524.3440627Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Tara M. Madhyastha and Daniel A. Reed. 1995. Data sonification: Do you see what I hear?IEEE Software 12, 2 (1995), 45–56.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Roozbeh Manshaei, Uzair Mayat, Aneesh Tarun, Sean DeLong, David Chiang, Justin Digregorio, Shahin Khayyer, Apurva Gupta, Matthew Kyan, and Ali Mazalek. 2019. Tangible Tensors: An Interactive System for Grasping Trends in Biological Systems Modeling. In Proceedings of the 2019 on Creativity and Cognition (San Diego, CA, USA) (C&C ’19). Association for Computing Machinery, New York, NY, USA, 41–52. https://doi.org/10.1145/3325480.3325502Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Santiago Marco and Agustín Gutierrez-Galvez. 2012. Signal and data processing for machine olfaction and chemical sensing: A review. IEEE Sensors Journal 12, 11 (2012), 3189–3214.Google ScholarGoogle ScholarCross RefCross Ref
  65. Daphne Menheere, Evianne van Hartingsveldt, Mads Birkebæk, Steven Vos, and Carine Lallemand. 2021. Laina: Dynamic Data Physicalization for Slow Exercising Feedback. In Designing Interactive Systems Conference 2021 (Virtual Event, USA) (DIS ’21). Association for Computing Machinery, New York, NY, USA, 1015–1030. https://doi.org/10.1145/3461778.3462041Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Miriah Meyer and Jason Dykes. 2020. Criteria for Rigor in Visualization Design Study. IEEE Transactions on Visualization and Computer Graphics 26, 1(2020), 87–97. https://doi.org/10.1109/TVCG.2019.2934539Google ScholarGoogle ScholarCross RefCross Ref
  67. Hila Mor, Tianyu Yu, Ken Nakagaki, Benjamin Harvey Miller, Yichen Jia, and Hiroshi Ishii. 2020. Venous Materials: Towards Interactive Fluidic Mechanisms. Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376129Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Tamara Munzner. 2015. Visualization Analysis & Design. CRC Press Taylor & Francis Group, Boca Raton, FL.Google ScholarGoogle Scholar
  69. Troy Nachtigall, Oscar Tomico, Ron Wakkary, and Pauline van Dongen. 2019. Encoding Materials and Data for Iterative Personalization. Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300749Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Ken Nakagaki, Sean Follmer, and Hiroshi Ishii. 2015. LineFORM: Actuated Curve Interfaces for Display, Interaction, and Constraint. In Proceedings of the 28th Annual Symposium on User Interface Software and Technology (Charlotte, NC, USA) (UIST ’15). Association for Computing Machinery, New York, NY, USA, 333–339. https://doi.org/10.1145/2807442.2807452Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Ken Nakagaki, Yingda (Roger) Liu, Chloe Nelson-Arzuaga, and Hiroshi Ishii. 2020. TRANS-DOCK: Expanding the Interactivity of Pin-Based Shape Displays by Docking Mechanical Transducers. In Proceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction (Sydney NSW, Australia) (TEI ’20). Association for Computing Machinery, New York, NY, USA, 131–142. https://doi.org/10.1145/3374920.3374933Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Surabhi Nath. 2020. Hear Her Fear: Data Sonification for Sensitizing Society on Crime Against Women in India. In IndiaHCI ’20: Proceedings of the 11th Indian Conference on Human-Computer Interaction (Online, India) (IndiaHCI 2020). Association for Computing Machinery, New York, NY, USA, 86–91. https://doi.org/10.1145/3429290.3429307Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Bettina Nissen and John Bowers. 2015. Data-Things: Digital Fabrication Situated within Participatory Data Translation Activities. Association for Computing Machinery, New York, NY, USA, 2467–2476. https://doi.org/10.1145/2702123.2702245Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Donald A Norman. 1988. The Psychology of Everyday Things. Basic Books.Google ScholarGoogle Scholar
  75. Dietmar Offenhuber. 2020. Data by Proxy — Material Traces as Autographic Visualizations. IEEE Transactions on Visualization and Computer Graphics 26, 1(2020), 98–108. https://doi.org/10.1109/TVCG.2019.2934788Google ScholarGoogle ScholarCross RefCross Ref
  76. Dietmar Offenhuber. 2020. What We Talk About When We Talk About Data Physicality. IEEE Computer Graphics and Applications 40, 6 (2020), 25–37. https://doi.org/10.1109/MCG.2020.3024146Google ScholarGoogle ScholarCross RefCross Ref
  77. Dietmar Offenhuber and Orkan Telhan. 2015. Indexical visualization–The data-less information display. In Ubiquitous Computing, Complexity, and Culture. Routledge, New York, NY, USA, 288–302.Google ScholarGoogle Scholar
  78. Matthew J Page, Joanne E McKenzie, Patrick M Bossuyt, Isabelle Boutron, Tammy C Hoffmann, Cynthia D Mulrow, Larissa Shamseer, Jennifer M Tetzlaff, Elie A Akl, Sue E Brennan, Roger Chou, Julie Glanville, Jeremy M Grimshaw, Asbjørn Hróbjartsson, Manoj M Lalu, Tianjing Li, Elizabeth W Loder, Evan Mayo-Wilson, Steve McDonald, Luke A McGuinness, Lesley A Stewart, James Thomas, Andrea C Tricco, Vivian A Welch, Penny Whiting, and David Moher. 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372(2021). https://doi.org/10.1136/bmj.n71 arXiv:https://www.bmj.com/content/372/bmj.n71.full.pdfGoogle ScholarGoogle ScholarCross RefCross Ref
  79. Gerhard Pahl and Wolfgang Beitz. 1996. Embodiment Design. In Engineering design. Springer, 199–403.Google ScholarGoogle Scholar
  80. Jesse Pepping, Sarah Scholte, Marnix van Wijland, Milan de Meij, Günter Wallner, and Regina Bernhaupt. 2020. Motiis: Fostering Parents’ Awareness of Their Adolescents Emotional Experiences during Gaming. In Proceedings of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, Shaping Society (Tallinn, Estonia) (NordiCHI ’20). Association for Computing Machinery, New York, NY, USA, Article 58, 11 pages. https://doi.org/10.1145/3419249.3420173Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Laura J. Perovich, Sara Ann Wylie, and Roseann Bongiovanni. 2021. Chemicals in the Creek: designing a situated data physicalization of open government data with the community. IEEE Transactions on Visualization and Computer Graphics 27, 2(2021), 913–923. https://doi.org/10.1109/TVCG.2020.3030472Google ScholarGoogle ScholarCross RefCross Ref
  82. Aura Pon, Eric Pattison, Lawrence Fyfe, Laurie Radford, and Sheelagh Carpendale. 2017. Torrent: Integrating Embodiment, Physicalization and Musification in Music-Making. In Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction (Yokohama, Japan) (TEI ’17). Association for Computing Machinery, New York, NY, USA, 209–216. https://doi.org/10.1145/3024969.3024974Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Zachary Pousman, John Stasko, and Michael Mateas. 2007. Casual Information Visualization: Depictions of Data in Everyday Life. IEEE Transactions on Visualization and Computer Graphics 13, 6(2007), 1145–1152. https://doi.org/10.1109/TVCG.2007.70541Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Filipe Quintal, Clinton Jorge, Valentina Nisi, and Nuno Nunes. 2016. Watt-I-See: A Tangible Visualization of Energy. In Proceedings of the International Working Conference on Advanced Visual Interfaces (Bari, Italy) (AVI ’16). Association for Computing Machinery, New York, NY, USA, 120–127. https://doi.org/10.1145/2909132.2909270Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Eric D Ragan, Alex Endert, Jibonananda Sanyal, and Jian Chen. 2015. Characterizing provenance in visualization and data analysis: an organizational framework of provenance types and purposes. IEEE transactions on visualization and computer graphics 22, 1(2015), 31–40.Google ScholarGoogle Scholar
  86. Renata G. Raidou, M. Eduard Gröller, and Hsiang-Yun Wu. 2020. Slice and Dice: A Physicalization Workflow for Anatomical Edutainment. Computer Graphics Forum 39, 7 (2020), 623–634. https://doi.org/10.1111/cgf.14173 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14173Google ScholarGoogle ScholarCross RefCross Ref
  87. Elena Sabinson, Isha Pradhan, and Keith Evan Green. 2021. Plant-Human Embodied Biofeedback (PheB): A Soft Robotic Surface for Emotion Regulation in Confined Physical Space. In Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction (Salzburg, Austria) (TEI ’21). Association for Computing Machinery, New York, NY, USA, Article 89, 14 pages. https://doi.org/10.1145/3430524.3446065Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Deepak Ranjan Sahoo, Takuto Nakamura, Asier Marzo, Themis Omirou, Michihiro Asakawa, and Sriram Subramanian. 2016. JOLED: A Mid-Air Display Based on Electrostatic Rotation of Levitated Janus Objects. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). Association for Computing Machinery, New York, NY, USA, 437–448. https://doi.org/10.1145/2984511.2984549Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Alper Sarikaya, Michael Gleicher, and Danielle Albers Szafir. 2018. Design Factors for Summary Visualization in Visual Analytics. Computer Graphics Forum 37, 3 (2018), 145–156. https://doi.org/10.1111/cgf.13408 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13408Google ScholarGoogle ScholarCross RefCross Ref
  90. Kim Sauvé, Saskia Bakker, and Steven Houben. 2020. Econundrum: Visualizing the Climate Impact of Dietary Choice through a Shared Data Sculpture. Association for Computing Machinery, New York, NY, USA, 1287–1300. https://doi.org/10.1145/3357236.3395509Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Kim Sauvé, Saskia Bakker, Nicolai Marquardt, and Steven Houben. 2020. LOOP: Exploring Physicalization of Activity Tracking Data. In Proceedings of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, Shaping Society (Tallinn, Estonia) (NordiCHI ’20). Association for Computing Machinery, New York, NY, USA, Article 52, 12 pages. https://doi.org/10.1145/3419249.3420109Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Kim Sauvé, David Verweij, Jason Alexander, and Steven Houben. 2021. Reconfiguration Strategies with Composite Data Physicalizations. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 471, 18 pages. https://doi.org/10.1145/3411764.3445746Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Bill Schilit, Norman Adams, and Roy Want. 1994. Context-aware computing applications. In 1994 First Workshop on Mobile Computing Systems and Applications. IEEE, 85–90.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Michael Sedlmair, Miriah Meyer, and Tamara Munzner. 2012. Design study methodology: Reflections from the trenches and the stacks. IEEE transactions on visualization and computer graphics 18, 12(2012), 2431–2440.Google ScholarGoogle Scholar
  95. [95] Adrien Segal.[n.d.]. https://www.adriensegal.com/. Accessed: 2021-09-09.Google ScholarGoogle Scholar
  96. Ben Shneiderman. 1994. Dynamic queries for visual information seeking. IEEE software 11, 6 (1994), 70–77.Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Simon Stusak, Moritz Hobe, and Andreas Butz. 2016. If Your Mind Can Grasp It, Your Hands Will Help. In Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction (Eindhoven, Netherlands) (TEI ’16). Association for Computing Machinery, New York, NY, USA, 92–99. https://doi.org/10.1145/2839462.2839476Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Ryo Suzuki, Jun Kato, Mark D. Gross, and Tom Yeh. 2018. Reactile: Programming Swarm User Interfaces through Direct Physical Manipulation. Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3173773Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Ryo Suzuki, Abigale Stangl, Mark D. Gross, and Tom Yeh. 2017. FluxMarker: Enhancing Tactile Graphics with Dynamic Tactile Markers. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility(Baltimore, Maryland, USA) (ASSETS ’17). Association for Computing Machinery, New York, NY, USA, 190–199. https://doi.org/10.1145/3132525.3132548Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Ryo Suzuki, Clement Zheng, Yasuaki Kakehi, Tom Yeh, Ellen Yi-Luen Do, Mark D. Gross, and Daniel Leithinger. 2019. ShapeBots: Shape-Changing Swarm Robots. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 493–505. https://doi.org/10.1145/3332165.3347911Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Faisal Taher, Yvonne Jansen, Jonathan Woodruff, John Hardy, Kasper Hornbæk, and Jason Alexander. 2017. Investigating the Use of a Dynamic Physical Bar Chart for Data Exploration and Presentation. IEEE Transactions on Visualization and Computer Graphics 23, 1(2017), 451–460. https://doi.org/10.1109/TVCG.2016.2598498Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Carlos E. Tejada, Raf Ramakers, Sebastian Boring, and Daniel Ashbrook. 2020. AirTouch: 3D-Printed Touch-Sensitive Objects Using Pneumatic Sensing. Association for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/3313831.3376136Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Alice Thudt, Uta Hinrichs, Samuel Huron, and Sheelagh Carpendale. 2018. Self-Reflection and Personal Physicalization Construction. Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3173728Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Brygg Ullmer, Hiroshi Ishii, and Robert J. K. Jacob. 2005. Token+constraint Systems for Tangible Interaction with Digital Information. ACM Trans. Comput.-Hum. Interact. 12, 1 (March 2005), 81–118. https://doi.org/10.1145/1057237.1057242Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Anna Vallgårda and Johan Redström. 2007. Computational Composites. Association for Computing Machinery, New York, NY, USA, 513–522. https://doi.org/10.1145/1240624.1240706Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Andrew Vande Moere and Stephanie Patel. 2010. The Physical Visualization of Information: Designing Data Sculptures in an Educational Context. In Visual Information Communication, Mao Lin Huang, Quang Vinh Nguyen, and Kang Zhang (Eds.). Springer US, Boston, MA, 1–23.Google ScholarGoogle Scholar
  107. Annemiek Veldhuis, Rong-Hao Liang, and Tilde Bekker. 2020. CoDa: Collaborative Data Interpretation Through an Interactive Tangible Scatterplot. In Proceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction (Sydney NSW, Australia) (TEI ’20). Association for Computing Machinery, New York, NY, USA, 323–336. https://doi.org/10.1145/3374920.3374934Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Jo Vermeulen, Kris Luyten, Elise van den Hoven, and Karin Coninx. 2013. Crossing the Bridge over Norman’s Gulf of Execution: Revealing Feedforward’s True Identity. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 1931–1940. https://doi.org/10.1145/2470654.2466255Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Karin von Ompteda. 2019. Data Manifestation: Merging the Human World & Global Climate Change. In 2019 IEEE VIS Arts Program (VISAP). IEEE, 1–8. https://doi.org/10.1109/VISAP.2019.8900829Google ScholarGoogle ScholarCross RefCross Ref
  110. Will Walker, Hyungie Sung, Chris Kevin Ong, and Federico Casalegno. 2017. Exploring Spatial Meaning with a Tangible Map. In Proceedings of the 6th ACM International Symposium on Pervasive Displays (Lugano, Switzerland) (PerDis ’17). Association for Computing Machinery, New York, NY, USA, Article 6, 8 pages. https://doi.org/10.1145/3078810.3078826Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Tali Weinberg. [n.d.]. Woven Climate Datascapes. https://www.taliweinberg.com/datascapes. Accessed: 2021-09-09.Google ScholarGoogle Scholar
  112. Mark Weiser. 1991. The Computer for the 21 st Century. Scientific american 265, 3 (1991), 94–105.Google ScholarGoogle Scholar
  113. Mikael Wiberg. 2018. The Materiality of Interaction: Notes on the Materials of Interaction Design. MIT Press, Cambridge, MA, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Mikael Wiberg and Erica Robles. 2010. Computational compositions: Aesthetics, materials, and interaction design. International Journal of Design 4, 2 (2010), 65–76.Google ScholarGoogle Scholar
  115. Wesley Willett, Yvonne Jansen, and Pierre Dragicevic. 2017. Embedded Data Representations. IEEE Transactions on Visualization and Computer Graphics 23, 1(2017), 461–470. https://doi.org/10.1109/TVCG.2016.2598608Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Mikołaj P. Woźniak, Julia Dominiak, Michał Pieprzowski, Piotr Ładoński, Krzysztof Grudzień, Lars Lischke, Andrzej Romanowski, and Paweł W. Woźniak. 2020. Subtletee: Augmenting Posture Awareness for Beginner Golfers. Proc. ACM Hum.-Comput. Interact. 4, ISS, Article 204 (Nov. 2020), 24 pages. https://doi.org/10.1145/3427332Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Paweł W. Woźniak, Monika Zbytniewska, Francisco Kiss, and Jasmin Niess. 2021. Making Sense of Complex Running Metrics Using a Modified Running Shoe. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3411764.3445506Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. Peta Wyeth. 2008. Understanding Engagement with Tangible User Interfaces. In Proceedings of the 20th Australasian Conference on Computer-Human Interaction: Designing for Habitus and Habitat (Cairns, Australia) (OZCHI ’08). Association for Computing Machinery, New York, NY, USA, 331–334. https://doi.org/10.1145/1517744.1517810Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. Ji Soo Yi, Youn ah Kang, John Stasko, and J.A. Jacko. 2007. Toward a Deeper Understanding of the Role of Interaction in Information Visualization. IEEE Transactions on Visualization and Computer Graphics 13, 6(2007), 1224–1231. https://doi.org/10.1109/TVCG.2007.70515Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Jack Zhao and Andrew Vande Moere. 2008. Embodiment in Data Sculpture: A Model of the Physical Visualization of Information. In Proceedings of the 3rd International Conference on Digital Interactive Media in Entertainment and Arts (Athens, Greece) (DIMEA ’08). Association for Computing Machinery, New York, NY, USA, 343–350. https://doi.org/10.1145/1413634.1413696Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. Clement Zheng, Peter Gyory, and Ellen Yi-Luen Do. 2020. Tangible Interfaces with Printed Paper Markers. Association for Computing Machinery, New York, NY, USA, 909–923. https://doi.org/10.1145/3357236.3395578Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. John Zimmerman, Jodi Forlizzi, and Shelley Evenson. 2007. Research through Design as a Method for Interaction Design Research in HCI. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’07). Association for Computing Machinery, New York, NY, USA, 493–502. https://doi.org/10.1145/1240624.1240704Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Making Data Tangible: A Cross-disciplinary Design Space for Data Physicalization

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CHI '22: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
        April 2022
        10459 pages
        ISBN:9781450391573
        DOI:10.1145/3491102

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 28 April 2022

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate6,199of26,314submissions,24%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format