skip to main content
research-article

Meta-representation of shape families

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

We introduce a meta-representation that represents the essence of a family of shapes. The meta-representation learns the configurations of shape parts that are common across the family, and encapsulates this knowledge with a system of geometric distributions that encode relative arrangements of parts. Thus, instead of predefined priors, what characterizes a shape family is directly learned from the set of input shapes. The meta-representation is constructed from a set of co-segmented shapes with known correspondence. It can then be used in several applications where we seek to preserve the identity of the shapes as members of the family. We demonstrate applications of the meta-representation in exploration of shape repositories, where interesting shape configurations can be examined in the set; guided editing, where models can be edited while maintaining their familial traits; and coupled editing, where several shapes can be collectively deformed by directly manipulating the distributions in the meta-representation. We evaluate the efficacy of the proposed representation on a variety of shape collections.

Skip Supplemental Material Section

Supplemental Material

a34-sidebyside.mp4

mp4

20.1 MB

References

  1. Averkiou, M., Kim, V. G., Zheng, Y., and Mitra, N. J. 2014. Shapesynth: Parameterizing model collections for coupled shape exploration and synthesis. Computer Graphics Forum (Eurographics) 33.Google ScholarGoogle Scholar
  2. Bokeloh, M., Wand, M., and Seidel, H.-P. 2010. A connection between partial symmetry and inverse procedural modeling. ACM Trans. Graph (SIGGRAPH) 29, 4, 104: 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Trans. Vis. & Comp. Graphics 14, 1, 213--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3D modeling. ACM Trans. Graph (SIGGRAPH) 30, 4, 35: 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chiu, S.-T. 1996. A comparative review of bandwidth selection for kernel density estimation. Statistica Sinica 6, 1, 129--145.Google ScholarGoogle Scholar
  6. Fisher, M., Savva, M., and Hanrahan, P. 2011. Characterizing structural relationships in scenes using graph kernels. ACM Trans. Graph (SIGGRAPH) 30, 4, 34: 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. ACM Trans. Graph (SIGGRAPH) 23, 3, 652--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iWIRES: An analyze-and-edit approach to shape manipulation. ACM Trans. Graph (SIGGRAPH) 28, 3, 33: 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hu, R., Fan, L., and Liu, L. 2012. Co-segmentation of 3D shapes via subspace clustering. Computer Graphics Forum (SGP) 31, 5, 1703--1713. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Huang, Q., Koltun, V., and Guibas, L. 2011. Joint shape segmentation with linear programming. ACM Trans. Graph (SIGGRAPH Asia) 30, 6, 125: 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3D mesh segmentation and labeling. ACM Trans. Graph (SIGGRAPH) 29, 3, 102: 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V. 2012. A probabilistic model of component-based shape synthesis. ACM Trans. Graph (SIGGRAPH) 31, 4, 55: 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kim, V. G., Li, W., Mitra, N. J., Chaudhuri, S., DiVerdi, S., and Funkhouser, T. 2013. Learning part-based templates from large collections of 3D shapes. ACM Trans. Graph (SIGGRAPH) 32, 4, 70: 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Laga, H., Mortara, M., and Spagnuolo, M. 2013. Geometry and context for semantic correspondences and functionality recognition in man-made 3D shapes. ACM Trans. Graph 32, 5, 150: 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Li, G., Liu, L., Zheng, H., and Mitra, N. J. 2010. Analysis, reconstruction and manipulation using arterial snakes. ACM Trans. Graph (SIGGRAPH Asia) 29, 6, 152: 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lin, J., Cohen-Or, D., Zhang, H. R., Liang, C., Sharf, A., Deussen, O., and Chen, B. 2011. Structure-preserving re-targeting of irregular 3D architecture. ACM Trans. Graph (SIGGRAPH Asia) 30, 6, 183: 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Meng, M., Xia, J., Luo, J., and He, Y. 2013. Unsupervised co-segmentation for 3D shapes using iterative multi-label optimization. Computer-Aided Design 45, 2, 312--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mitra, N. J., Wand, M., Zhang, H., Cohen-Or, D., and Bokeloh, M. 2013. Structure-aware shape processing. In Proc. Eurographics State-of-the-art Reports.Google ScholarGoogle Scholar
  19. Ovsjanikov, M., Li, W., Guibas, L., and Mitra, N. J. 2011. Exploration of continuous variability in collections of 3D shapes. ACM Trans. Graph (SIGGRAPH) 30, 4, 33: 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Schneider, P. J., and Eberly, D. H. 2003. Geometric Tools for Computer Graphics. Morgan Kaufmann, San Francisco. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Shtof, A., Agathos, A., Gingold, Y., Shamir, A., and Cohen-Or, D. 2013. Geosemantic snapping for sketch-based modeling. Computer Graphics Forum (Eurographics) 32, 2, 245--253.Google ScholarGoogle ScholarCross RefCross Ref
  22. Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph (SIGGRAPH Asia) 30, 6, 126: 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis. Chapman & Hall, London.Google ScholarGoogle Scholar
  24. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Symp. Geometry Processing, 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph (SIGGRAPH) 24, 3, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. van Kaick, O., Xu, K., Zhang, H., Wang, Y., Sun, S., Shamir, A., and Cohen-Or, D. 2013. Co-hierarchical analysis of shape structures. ACM Trans. Graph (SIGGRAPH) 32, 4, 69: 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wang, Y., Asafi, S., van Kaick, O., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Active co-analysis of a set of shapes. ACM Trans. Graph (SIGGRAPH Asia) 31, 6, 157: 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Xu, W., Wang, J., Yin, K., Zhou, K., van de Panne, M., Chen, F., and Guo, B. 2009. Joint-aware manipulation of deformable models. ACM Trans. Graph (SIGGRAPH) 28, 3, 35: 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Xu, K., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Fit and diverse: Set evolution for inspiring 3D shape galleries. ACM Trans. Graph (SIGGRAPH) 31, 4, 57: 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Yang, Y.-L., Yang, Y.-J., Pottmann, H., and Mitra, N. J. 2011. Shape space exploration of constrained meshes. ACM Trans. Graph (SIGGRAPH Asia) 30, 6, 124:1--124:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Yumer, M. E., and Kara, L. B. 2012. Co-abstraction of shape collections. ACM Trans. Graph (SIGGRAPH Asia) 31, 6, 166: 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zheng, Y., Fu, H., Cohen-Or, D., Au, O. K.-C., and Tai, C.-L. 2011. Component-wise controllers for structure-preserving shape manipulation. Computer Graphics Forum (Eurographics) 30, 2, 563--572.Google ScholarGoogle ScholarCross RefCross Ref
  33. Zheng, Y., Cohen-Or, D., and Mitra, N. J. 2013. Smart variations: Functional substructures for part compatibility. Computer Graphics Forum (Eurographics) 32, 2, 195--204.Google ScholarGoogle ScholarCross RefCross Ref
  34. Zheng, Y., Cohen-Or, D., Averkiou, M., and Mitra, N. J. 2014. Recurring part arrangements in shape collections. Computer Graphics Forum (Eurographics) 33.Google ScholarGoogle Scholar

Index Terms

  1. Meta-representation of shape families

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 33, Issue 4
        July 2014
        1366 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2601097
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2014
        Published in tog Volume 33, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader