Skip to main content
Erschienen in: Journal of Electronic Materials 6/2023

21.03.2023 | Original Research Article

Comparative Electrochemical, Photocatalytic, and Photoluminescence Studies in SrWO4 and rGO-SrWO4 Nanocomposites

verfasst von: Ch. Sridhar, Neha Sahu, Young-Soo Seo, I. Rabani, G. R. Turpu, Shalinta Tigga, G. Padmaja

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

SrWO4 (SWO), reduced graphene oxide (rGO), and rGo-SrWO4 (rGO-SWO) nanocomposite systems were synthesized through co-precipitation, the modified Hummers method, and sonochemical methods, respectively. Structural details were confirmed by standard x-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy, representing the indicative rGO and SrWO4 (SWO) features, respectively. All features were found together in the composite materials. Scanning electron microscopy (SEM) micrographs show excellent distribution of SWO nanoparticles on rGO flakes. UV–visible diffuse reflectance spectroscopy (UV–Vis–DRS) was implemented for band gap evaluation. The evaluated band gap energies increase with the increase in calcination temperature, and band gap energy is found to be in the range 4.00–4.33 eV for SWO and 3.06–3.32 eV for rGO-SWO nanocomposite. The rGO-SWO nanocomposite shows improved photocatalytic ability with 89% degradation of MB dye as compared to SWO. Photoluminescence (PL) studies indicate that the particle size plays a vital role in the PL excitation and emission intensities. The intensity of the spectra was observed to be decreased in the case of rGO-SWO composites, indicating the reduction in the recombination rate of e-h+ pairs by the introduction of rGO. Electrochemical studies indicate that the rGO-SWO composite shows a twofold increase in specific capacitance as compared to the pristine SWO compounds.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Sharma, T. Jain, S. Singh, and O.P. Pandey, Photocatalytic degradation of organic dyes under UV–Visible light using capped ZnS nanoparticles. Sol. Energy 86, 626 (2012).CrossRef M. Sharma, T. Jain, S. Singh, and O.P. Pandey, Photocatalytic degradation of organic dyes under UV–Visible light using capped ZnS nanoparticles. Sol. Energy 86, 626 (2012).CrossRef
2.
Zurück zum Zitat T. Hisatomi, J. Kubota, and K. Domen, Recent advances in semiconductors for photocatalytic and photo electrochemical water splitting. Chem. Soc. Rev. 43(22), 7520 (2014).CrossRef T. Hisatomi, J. Kubota, and K. Domen, Recent advances in semiconductors for photocatalytic and photo electrochemical water splitting. Chem. Soc. Rev. 43(22), 7520 (2014).CrossRef
3.
Zurück zum Zitat T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami, and P. Fornasiero, Synthesis, characterization and photocatalytic performance of transition metal tungstates. Chem. Phys. Lett. 498, 113–119 (2010).CrossRef T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami, and P. Fornasiero, Synthesis, characterization and photocatalytic performance of transition metal tungstates. Chem. Phys. Lett. 498, 113–119 (2010).CrossRef
4.
Zurück zum Zitat J.Y. Zheng, Z. Haider, T.K. Van, A.U. Pawar, M.J. Kang, C.W. Kim, and Y.S. Kang, Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. Cryst. Eng. Comm 17(32), 6070 (2015).CrossRef J.Y. Zheng, Z. Haider, T.K. Van, A.U. Pawar, M.J. Kang, C.W. Kim, and Y.S. Kang, Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. Cryst. Eng. Comm 17(32), 6070 (2015).CrossRef
5.
Zurück zum Zitat D. Liu, J. Huang, X. Tao, and D. Wang, One-step synthesis of C-Bi2WO6 crystallites with improved photo-catalytic activities under visible light irradiation. RSC Adv. 5(81), 66464 (2015).CrossRef D. Liu, J. Huang, X. Tao, and D. Wang, One-step synthesis of C-Bi2WO6 crystallites with improved photo-catalytic activities under visible light irradiation. RSC Adv. 5(81), 66464 (2015).CrossRef
6.
Zurück zum Zitat M.M.J. Sadiq, U.S. Shenoy, and D.K. Bhat, Novel RGO–ZnWO4–Fe3O4 nano composite as high performance visible light photocatalyst. RSC Adv. 6, 61821–61829 (2016).CrossRef M.M.J. Sadiq, U.S. Shenoy, and D.K. Bhat, Novel RGO–ZnWO4–Fe3O4 nano composite as high performance visible light photocatalyst. RSC Adv. 6, 61821–61829 (2016).CrossRef
7.
Zurück zum Zitat M.M.J. Sadiq, U.S. Shenoy, and D.K. Bhat, Enhanced photocatalytic performance of N-doped RGO-FeWO4 /Fe3O4 ternary nano composite in environmental applications. Mater. Today Chem. 4, 133–141 (2017).CrossRef M.M.J. Sadiq, U.S. Shenoy, and D.K. Bhat, Enhanced photocatalytic performance of N-doped RGO-FeWO4 /Fe3O4 ternary nano composite in environmental applications. Mater. Today Chem. 4, 133–141 (2017).CrossRef
8.
Zurück zum Zitat M.M.J. Sadiq, U.S. Shenoy, and D.K. Bhat, NiWO4-ZnO-NRGO ternary nanocomposite as an efficient photocatalyst for degradation of methylene blue and reduction of 4-nitro phenol. J. Phys Chem Solids 109, 124–133 (2017).CrossRef M.M.J. Sadiq, U.S. Shenoy, and D.K. Bhat, NiWO4-ZnO-NRGO ternary nanocomposite as an efficient photocatalyst for degradation of methylene blue and reduction of 4-nitro phenol. J. Phys Chem Solids 109, 124–133 (2017).CrossRef
9.
Zurück zum Zitat H. Wadhwa, D. Kumar, S. Mahendia, and S. Kumar, Microwave assisted facile synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite and their application as active SERS substrate. Mater. Chem. Phys. 194, 274–282 (2017).CrossRef H. Wadhwa, D. Kumar, S. Mahendia, and S. Kumar, Microwave assisted facile synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite and their application as active SERS substrate. Mater. Chem. Phys. 194, 274–282 (2017).CrossRef
10.
Zurück zum Zitat M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995).CrossRef M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995).CrossRef
11.
12.
Zurück zum Zitat C. Shivakumara, R. Saraf, S. Behera, N. Dhananjaya, and H. Nagabhushana, Scheelite-type MWO4 (M=Ca, Sr, and Ba) nano phosphors: Facile synthesis, structural characterization, photoluminescence, and photocatalytic properties. Mater. Res. Bull. 61, 422–432 (2015).CrossRef C. Shivakumara, R. Saraf, S. Behera, N. Dhananjaya, and H. Nagabhushana, Scheelite-type MWO4 (M=Ca, Sr, and Ba) nano phosphors: Facile synthesis, structural characterization, photoluminescence, and photocatalytic properties. Mater. Res. Bull. 61, 422–432 (2015).CrossRef
13.
Zurück zum Zitat H. Farsi and Z. Barzgari, Chemical synthesis of nanostructured SrWO4 for electrochemical energy storage and conversion applications. Int. J. Nanosci 13(02), 1450013 (2014).CrossRef H. Farsi and Z. Barzgari, Chemical synthesis of nanostructured SrWO4 for electrochemical energy storage and conversion applications. Int. J. Nanosci 13(02), 1450013 (2014).CrossRef
14.
Zurück zum Zitat S. Vidya, S. Solomon, and J.K. Thomas, Nanocrystalline scheelite SrWO4: a low temperature co-fired ceramic optical material-synthesis and properties. J. Mater. Sci. Mater. Electron 25(2), 693 (2013).CrossRef S. Vidya, S. Solomon, and J.K. Thomas, Nanocrystalline scheelite SrWO4: a low temperature co-fired ceramic optical material-synthesis and properties. J. Mater. Sci. Mater. Electron 25(2), 693 (2013).CrossRef
15.
Zurück zum Zitat Z. Lou and M. Cocivera, Cathodoluminescence of CaWO4 and SrWO4 thin films prepared by spray pyrolysis. Mater. Res. Bull 37(9), 1573 (2002).CrossRef Z. Lou and M. Cocivera, Cathodoluminescence of CaWO4 and SrWO4 thin films prepared by spray pyrolysis. Mater. Res. Bull 37(9), 1573 (2002).CrossRef
16.
Zurück zum Zitat G. Huang, C. Zhang, and Y. Zhu, ZnWO4 photocatalyst with high activity for degradation of organic contaminants. J. Alloys. Compd 432(1–2), 269 (2007).CrossRef G. Huang, C. Zhang, and Y. Zhu, ZnWO4 photocatalyst with high activity for degradation of organic contaminants. J. Alloys. Compd 432(1–2), 269 (2007).CrossRef
17.
Zurück zum Zitat L. Zhang, Q. Bai, L. Wang, A. Zhang, Y. Zhang, and Y. Xing, Synthesis and electrochemical properties of SrWO4/graphene composite as anode material for lithium-ion batteries. Funct. Mater. Lett. 7(02), 1450010 (2014).CrossRef L. Zhang, Q. Bai, L. Wang, A. Zhang, Y. Zhang, and Y. Xing, Synthesis and electrochemical properties of SrWO4/graphene composite as anode material for lithium-ion batteries. Funct. Mater. Lett. 7(02), 1450010 (2014).CrossRef
18.
Zurück zum Zitat L.S. Cavalcante, J.C. Sczancoski, N.C. Batista, E. Longo, J.A. Varela, and M.O. Orlandi, Growth mechanism and photocatalytic properties of SrWO4 microcrystals synthesized by injection of ions into a hot aqueous solution. Adv. Powder Technol. 24(1), 344 (2013).CrossRef L.S. Cavalcante, J.C. Sczancoski, N.C. Batista, E. Longo, J.A. Varela, and M.O. Orlandi, Growth mechanism and photocatalytic properties of SrWO4 microcrystals synthesized by injection of ions into a hot aqueous solution. Adv. Powder Technol. 24(1), 344 (2013).CrossRef
19.
Zurück zum Zitat Z. Shan, Y. Wang, H. Ding, and F. Huang, Structure-dependent photocatalytic activities of MWO4 (M=Ca, Sr, Ba). J. Mol. Catal. A Chem. 302(1–2), 54 (2009).CrossRef Z. Shan, Y. Wang, H. Ding, and F. Huang, Structure-dependent photocatalytic activities of MWO4 (M=Ca, Sr, Ba). J. Mol. Catal. A Chem. 302(1–2), 54 (2009).CrossRef
20.
Zurück zum Zitat M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, and W. Ahmed, A, facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. Appl. Surf. Sci 274, 273 (2013).CrossRef M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, and W. Ahmed, A, facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. Appl. Surf. Sci 274, 273 (2013).CrossRef
21.
Zurück zum Zitat S. Thangavel, G. Venugopal, and S.-J. Kim, Enhanced photocatalytic efficacy of organic dyes using β-tin tungstate–reduced graphene oxide nano composites. Mater. Chem. and Phys. 145(1–2), 108 (2014).CrossRef S. Thangavel, G. Venugopal, and S.-J. Kim, Enhanced photocatalytic efficacy of organic dyes using β-tin tungstate–reduced graphene oxide nano composites. Mater. Chem. and Phys. 145(1–2), 108 (2014).CrossRef
22.
Zurück zum Zitat J. Shen, X. Li, W. Huang, N. Li, and M. Ye, Synthesis of novel photocatalytic RGO-InVO4 nanocomposites with visible light photoactivity. Mater. Res. Bull. 48(9), 3112 (2013).CrossRef J. Shen, X. Li, W. Huang, N. Li, and M. Ye, Synthesis of novel photocatalytic RGO-InVO4 nanocomposites with visible light photoactivity. Mater. Res. Bull. 48(9), 3112 (2013).CrossRef
23.
Zurück zum Zitat L. Rao, J. Xu, Y. Ao, and P. Wang, In-situ growth of zinc tungstate nanorods on graphene for enhanced photocatalytic performance. Mater. Res. Bull. 57, 41 (2014).CrossRef L. Rao, J. Xu, Y. Ao, and P. Wang, In-situ growth of zinc tungstate nanorods on graphene for enhanced photocatalytic performance. Mater. Res. Bull. 57, 41 (2014).CrossRef
24.
Zurück zum Zitat Wang, L., & Wang, W., In situ synthesis of CdS modified CdWO4 nanorods and their application in photocatalytic H2 evolution., Cryst Eng Comm, 14(9), 3315 (2012). Wang, L., & Wang, W., In situ synthesis of CdS modified CdWO4 nanorods and their application in photocatalytic H2 evolution., Cryst Eng Comm, 14(9), 3315 (2012).
25.
Zurück zum Zitat Y. Fu, X. Sun, and X. Wang, BiVO4–graphene catalyst and its high photocatalytic performance under visible light irradiation. Mater. Chem. Phys. 131(1–2), 325 (2011).CrossRef Y. Fu, X. Sun, and X. Wang, BiVO4–graphene catalyst and its high photocatalytic performance under visible light irradiation. Mater. Chem. Phys. 131(1–2), 325 (2011).CrossRef
26.
Zurück zum Zitat M. Liu, Q. Zhang, H. Zhao, S. Chen, H. Yu, Y. Zhang, and X. Quan, Controllable oxidative DNA cleavage-dependent regulation of graphene/DNA interaction. Chem Commun 47(14), 4084 (2011).CrossRef M. Liu, Q. Zhang, H. Zhao, S. Chen, H. Yu, Y. Zhang, and X. Quan, Controllable oxidative DNA cleavage-dependent regulation of graphene/DNA interaction. Chem Commun 47(14), 4084 (2011).CrossRef
27.
Zurück zum Zitat H. Wu, S. Lin, C. Chen, W. Liang, X. Liu, and H. Yang, A new ZnO/rGO/polyaniline ternary nanocomposite as photocatalyst with improved photocatalytic activity. Mater. Res. Bull 83, 434 (2016).CrossRef H. Wu, S. Lin, C. Chen, W. Liang, X. Liu, and H. Yang, A new ZnO/rGO/polyaniline ternary nanocomposite as photocatalyst with improved photocatalytic activity. Mater. Res. Bull 83, 434 (2016).CrossRef
28.
Zurück zum Zitat Y.H. Ng, S. Ikeda, M. Matsumura, and R. Amal, A perspective on fabricating carbon-based nanomaterials by photocatalysis and their applications. Energy Environ. Sci. 5(11), 9307 (2012).CrossRef Y.H. Ng, S. Ikeda, M. Matsumura, and R. Amal, A perspective on fabricating carbon-based nanomaterials by photocatalysis and their applications. Energy Environ. Sci. 5(11), 9307 (2012).CrossRef
29.
Zurück zum Zitat Ganesh Bera, Sourav Sinha, P. Rambabu, P. Das, A. K. Gupta, and G. R. Turpu, Structural characterization of FeVO4 synthesized by co-precipitation method, AIP Conf. Proc. 1728, 020284 (2016) Ganesh Bera, Sourav Sinha, P. Rambabu, P. Das, A. K. Gupta, and G. R. Turpu, Structural characterization of FeVO4 synthesized by co-precipitation method, AIP Conf. Proc. 1728, 020284 (2016)
30.
Zurück zum Zitat G. Bera, A. Mishra, P. Mal, P. Das, G. Padmaja, P. Rambabu, and G.R. Turpu, Methylene blue dye degradation by bulk, nano FeVO4 and rGO-FeVO4. AIP Conf. Proc. 2220, 080070 (2020).CrossRef G. Bera, A. Mishra, P. Mal, P. Das, G. Padmaja, P. Rambabu, and G.R. Turpu, Methylene blue dye degradation by bulk, nano FeVO4 and rGO-FeVO4. AIP Conf. Proc. 2220, 080070 (2020).CrossRef
31.
Zurück zum Zitat A. Mishra, A. Panigrahi, P. Mal, S. Penta, G. Padmaja, G. Bera, and G.R. Turpu, Rapid photo degradation of Methylene blue dye by rGO- V2O5 nano composite. J. Alloys and Comp. 842, 155746 (2020).CrossRef A. Mishra, A. Panigrahi, P. Mal, S. Penta, G. Padmaja, G. Bera, and G.R. Turpu, Rapid photo degradation of Methylene blue dye by rGO- V2O5 nano composite. J. Alloys and Comp. 842, 155746 (2020).CrossRef
33.
Zurück zum Zitat A. Mishra, G. Bera, P. Mal, G. Padmaja, P. Sen, P. Das, and G.R. Turpu, Comparative electrochemical analysis of rGO-FeVO4 nanocomposite and FeVO4 for supercapacitor application. Appl. Surf. Sci. 488, 221 (2019).CrossRef A. Mishra, G. Bera, P. Mal, G. Padmaja, P. Sen, P. Das, and G.R. Turpu, Comparative electrochemical analysis of rGO-FeVO4 nanocomposite and FeVO4 for supercapacitor application. Appl. Surf. Sci. 488, 221 (2019).CrossRef
34.
Zurück zum Zitat R.K. Upadhyay, N. Soin, and S.S. Roy, Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Adv. 4(8), 3823 (2014).CrossRef R.K. Upadhyay, N. Soin, and S.S. Roy, Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Adv. 4(8), 3823 (2014).CrossRef
35.
Zurück zum Zitat M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-warthan, and W. Tremel, Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J. Mater. Chem. A 3(37), 18753 (2015).CrossRef M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-warthan, and W. Tremel, Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J. Mater. Chem. A 3(37), 18753 (2015).CrossRef
36.
Zurück zum Zitat M.C. Oliveira, L. Gracia, I.C. Nogueira, M.F. do CarmoGurgel, J.M.R. Mercury, E. Longo, and J. Andrés, Synthesis and morphological transformation of BaWO4 crystals: experimental and theoretical insights. Ceram. Int. 42(9), 10913 (2016).CrossRef M.C. Oliveira, L. Gracia, I.C. Nogueira, M.F. do CarmoGurgel, J.M.R. Mercury, E. Longo, and J. Andrés, Synthesis and morphological transformation of BaWO4 crystals: experimental and theoretical insights. Ceram. Int. 42(9), 10913 (2016).CrossRef
37.
Zurück zum Zitat A. Gulino, P. Dapporto, P. Rossi, and I. Fragalà, A novel self-generating liquid MOCVD precursor for CO3O4 thin films. Chem. Mater. 15(20), 3748 (2003).CrossRef A. Gulino, P. Dapporto, P. Rossi, and I. Fragalà, A novel self-generating liquid MOCVD precursor for CO3O4 thin films. Chem. Mater. 15(20), 3748 (2003).CrossRef
38.
Zurück zum Zitat M. Ramezani, A. Sobhani-Nasab, and A. Davoodi, Bismuth selenide nanoparticles: simple synthesis, characterization, and its light harvesting applications in the presence of novel precursor. J. Mater. Sci. Mater. Electron. 26(7), 5440 (2015).CrossRef M. Ramezani, A. Sobhani-Nasab, and A. Davoodi, Bismuth selenide nanoparticles: simple synthesis, characterization, and its light harvesting applications in the presence of novel precursor. J. Mater. Sci. Mater. Electron. 26(7), 5440 (2015).CrossRef
39.
Zurück zum Zitat D. Konios, M.M. Stylianakis, E. Stratakis, and E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci 430, 108 (2014).CrossRef D. Konios, M.M. Stylianakis, E. Stratakis, and E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci 430, 108 (2014).CrossRef
40.
Zurück zum Zitat X. Zhao, T.L.Y. Cheung, X. Zhang, D.H.L. Ng, and J. Yu, Facile preparation of strontium tungstate and tungsten trioxide hollow spheres. J. Am. Ceram. Soc. 89, 2960 (2006). X. Zhao, T.L.Y. Cheung, X. Zhang, D.H.L. Ng, and J. Yu, Facile preparation of strontium tungstate and tungsten trioxide hollow spheres. J. Am. Ceram. Soc. 89, 2960 (2006).
41.
Zurück zum Zitat T. Xu, L. Zhang, H. Cheng, and Y. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B: Environ. 101(3–4), 382 (2011).CrossRef T. Xu, L. Zhang, H. Cheng, and Y. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B: Environ. 101(3–4), 382 (2011).CrossRef
42.
Zurück zum Zitat N. Dirany, E. McRae, and M. Arab, Morphological and structural investigation of SrWO4 microcrystals in relationship with the electrical impedance properties. Cryst Eng Comm 19(34), 5008 (2017).CrossRef N. Dirany, E. McRae, and M. Arab, Morphological and structural investigation of SrWO4 microcrystals in relationship with the electrical impedance properties. Cryst Eng Comm 19(34), 5008 (2017).CrossRef
43.
Zurück zum Zitat C. Botas, P. Álvarez, C. Blanco, M.D. Gutiérrez, P. Ares, R. Zamani, and R. Menéndez, Tailored graphene materials by chemical reduction of graphene oxides of different atomic structure. RSC Adv. 2(25), 9643 (2012).CrossRef C. Botas, P. Álvarez, C. Blanco, M.D. Gutiérrez, P. Ares, R. Zamani, and R. Menéndez, Tailored graphene materials by chemical reduction of graphene oxides of different atomic structure. RSC Adv. 2(25), 9643 (2012).CrossRef
44.
Zurück zum Zitat Y.J. Wan, W.H. Yang, S.H. Yu, R. Sun, C.P. Wong, and W.H. Liao, Covalent polymer functionalization of graphene for improved dielectric properties and thermal stability of epoxy composites. Compos. Sci. Technol 122, 27 (2016).CrossRef Y.J. Wan, W.H. Yang, S.H. Yu, R. Sun, C.P. Wong, and W.H. Liao, Covalent polymer functionalization of graphene for improved dielectric properties and thermal stability of epoxy composites. Compos. Sci. Technol 122, 27 (2016).CrossRef
45.
Zurück zum Zitat V.I. Balakshy, K.R. Asratyan, and V.Y. Molchanov, Acousto-optic collinear diffraction of a strongly divergent optical beam. J. Opt. A Pure Appl. Opt. 3(4), S87–S92 (2001).CrossRef V.I. Balakshy, K.R. Asratyan, and V.Y. Molchanov, Acousto-optic collinear diffraction of a strongly divergent optical beam. J. Opt. A Pure Appl. Opt. 3(4), S87–S92 (2001).CrossRef
46.
Zurück zum Zitat L. Fan, Y.X. Fan, Y.H. Duan, Q. Wang, H.T. Wang, G.H. Jia, and C.Y. Tu, Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser. Appl. Phys. B 94(4), 553 (2009).CrossRef L. Fan, Y.X. Fan, Y.H. Duan, Q. Wang, H.T. Wang, G.H. Jia, and C.Y. Tu, Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser. Appl. Phys. B 94(4), 553 (2009).CrossRef
47.
Zurück zum Zitat A. Phuruangrat, T. Thongtem, and S. Thongtem, Preparation, characterization and photoluminescence of nanocrystalline calcium molybdate. J. Alloy Compd. 481(1–2), 568 (2009).CrossRef A. Phuruangrat, T. Thongtem, and S. Thongtem, Preparation, characterization and photoluminescence of nanocrystalline calcium molybdate. J. Alloy Compd. 481(1–2), 568 (2009).CrossRef
48.
Zurück zum Zitat X. Liu, Y. Nie, H. Yang, S. Sun, Y. Chen, T. Yang, and S. Lin, Enhancement of the photocatalytic activity and electrochemical property of graphene-SrWO4 nanocomposite. Solid State Sci. 55, 130 (2016).CrossRef X. Liu, Y. Nie, H. Yang, S. Sun, Y. Chen, T. Yang, and S. Lin, Enhancement of the photocatalytic activity and electrochemical property of graphene-SrWO4 nanocomposite. Solid State Sci. 55, 130 (2016).CrossRef
49.
Zurück zum Zitat A. Phuruangrat, T. Thongtem, and S. Thongtem, Analysis of lead molybdate and lead tungstate synthesized by a sonochemical method. Curr. Appl. Phys 10(1), 342 (2010).CrossRef A. Phuruangrat, T. Thongtem, and S. Thongtem, Analysis of lead molybdate and lead tungstate synthesized by a sonochemical method. Curr. Appl. Phys 10(1), 342 (2010).CrossRef
50.
Zurück zum Zitat J.L. Burcham, and E.I. Wachs, Vibrational analysis of the two non-equivalent, tetrahedral tungstate (WO4) units in Ce2(WO4)3 and La2(WO4)3. Spect. Acta Part A Mol. Biomol. Spectrosc. 54(10), 1355–1368 (1998).CrossRef J.L. Burcham, and E.I. Wachs, Vibrational analysis of the two non-equivalent, tetrahedral tungstate (WO4) units in Ce2(WO4)3 and La2(WO4)3. Spect. Acta Part A Mol. Biomol. Spectrosc. 54(10), 1355–1368 (1998).CrossRef
51.
Zurück zum Zitat A. Phuruangrat, T. Thongtem, and S. Thongtem, Characterization of star fruit-like PbWO4 microstructured clusters synthesized by a solution route(Article). J. Ceram. Process. Res. 13(5), 514 (2012). A. Phuruangrat, T. Thongtem, and S. Thongtem, Characterization of star fruit-like PbWO4 microstructured clusters synthesized by a solution route(Article). J. Ceram. Process. Res. 13(5), 514 (2012).
52.
Zurück zum Zitat R. Wang, C. Liu, J. Zeng, K. Li, and H. Wang, Fabrication and morphology control of BaWO4 thin films by microwave assisted chemical bath deposition. J. Solid State Chem. 182(4), 677 (2009).CrossRef R. Wang, C. Liu, J. Zeng, K. Li, and H. Wang, Fabrication and morphology control of BaWO4 thin films by microwave assisted chemical bath deposition. J. Solid State Chem. 182(4), 677 (2009).CrossRef
53.
Zurück zum Zitat H. Li, J. Wei, Y. Qian, J. Zhang, J. Yu, G. Wang, and G. Xu, Effects of the graphene content and the treatment temperature on the supercapacitive properties of VOx/graphene nanocomposites. Colloids Surf. A 449, 148 (2014).CrossRef H. Li, J. Wei, Y. Qian, J. Zhang, J. Yu, G. Wang, and G. Xu, Effects of the graphene content and the treatment temperature on the supercapacitive properties of VOx/graphene nanocomposites. Colloids Surf. A 449, 148 (2014).CrossRef
54.
Zurück zum Zitat J.Y. Zheng, Z. Haider, T.K. Van, A.U. Pawar, M.J. Kang, C.W. Kim, and Y.S. Kang, Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. Cryst. Eng. Comm. 17(32), 6070 (2015).CrossRef J.Y. Zheng, Z. Haider, T.K. Van, A.U. Pawar, M.J. Kang, C.W. Kim, and Y.S. Kang, Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. Cryst. Eng. Comm. 17(32), 6070 (2015).CrossRef
55.
Zurück zum Zitat H. Farsi, Z. Barzgari, and S.Z. Askari, Sunlight-induced photocatalytic activity of nanostructured calcium tungstate for methylene blue degradation. Res. Chem. Intermed. 41(8), 5463 (2014).CrossRef H. Farsi, Z. Barzgari, and S.Z. Askari, Sunlight-induced photocatalytic activity of nanostructured calcium tungstate for methylene blue degradation. Res. Chem. Intermed. 41(8), 5463 (2014).CrossRef
56.
Zurück zum Zitat E. Aawani, N. Memarian, and H.R. Dizaji, Synthesis and characterization of reduced graphene oxide–V2O5 nanocomposite for enhanced photocatalytic activity under different types of irradiation. J. Phys. Chem. Solid. 125, 8 (2019).CrossRef E. Aawani, N. Memarian, and H.R. Dizaji, Synthesis and characterization of reduced graphene oxide–V2O5 nanocomposite for enhanced photocatalytic activity under different types of irradiation. J. Phys. Chem. Solid. 125, 8 (2019).CrossRef
57.
Zurück zum Zitat C. Turchi, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122(1), 178 (1990).CrossRef C. Turchi, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122(1), 178 (1990).CrossRef
58.
Zurück zum Zitat A.E.H. Machado, J.A. de Miranda, R.F. de Freitas, E.T.F.M. Duarte, L.F. Ferreira, Y.D.T. Albuquerque, and L. de Oliveira, Destruction of the organic matter present in effluent from a cellulose and paper industry using photocatalysis. J. Photochem. Photobiol. A 155(1–3), 231 (2003).CrossRef A.E.H. Machado, J.A. de Miranda, R.F. de Freitas, E.T.F.M. Duarte, L.F. Ferreira, Y.D.T. Albuquerque, and L. de Oliveira, Destruction of the organic matter present in effluent from a cellulose and paper industry using photocatalysis. J. Photochem. Photobiol. A 155(1–3), 231 (2003).CrossRef
59.
Zurück zum Zitat T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami, and P. Fornasiero, Synthesis, characterization and photocatalytic performance of transition metal tungstates. Chem. Phys. Lett. 498(1–3), 113 (2010).CrossRef T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami, and P. Fornasiero, Synthesis, characterization and photocatalytic performance of transition metal tungstates. Chem. Phys. Lett. 498(1–3), 113 (2010).CrossRef
60.
Zurück zum Zitat M. Mohamed JafferSadiq, and A. Samson Nesaraj, Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample. J. Nanostruct. Chem. 5(1), 45 (2014).CrossRef M. Mohamed JafferSadiq, and A. Samson Nesaraj, Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample. J. Nanostruct. Chem. 5(1), 45 (2014).CrossRef
61.
Zurück zum Zitat S.L.N. Zulmajdi, S.N.F.H. Ajak, J. Hobley, N. Duraman, M.H. Harunsani, H.M. Yasin, M. Nur, and A. Usman, Kinetics of photocatalytic degradation of methylene blue in aqueous dispersions of TiO2 nanoparticlesunder UV-LED irradiation. Am. J. Nanomater 5, 1 (2017). S.L.N. Zulmajdi, S.N.F.H. Ajak, J. Hobley, N. Duraman, M.H. Harunsani, H.M. Yasin, M. Nur, and A. Usman, Kinetics of photocatalytic degradation of methylene blue in aqueous dispersions of TiO2 nanoparticlesunder UV-LED irradiation. Am. J. Nanomater 5, 1 (2017).
62.
Zurück zum Zitat M.A. Rauf, M.A. Meetani, A. Khaleel, and A. Ahmed, Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chem. Eng. J. 157(2–3), 373 (2010).CrossRef M.A. Rauf, M.A. Meetani, A. Khaleel, and A. Ahmed, Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chem. Eng. J. 157(2–3), 373 (2010).CrossRef
63.
Zurück zum Zitat H. Li, M. Zhu, W. Chen, L. Xu, and K. Wang, Non-light-driven reduced graphene oxide anchored TiO2 nanocatalysts with enhanced catalytic oxidation performance. J. Colloid Interface Sci. 507, 31 (2017).CrossRef H. Li, M. Zhu, W. Chen, L. Xu, and K. Wang, Non-light-driven reduced graphene oxide anchored TiO2 nanocatalysts with enhanced catalytic oxidation performance. J. Colloid Interface Sci. 507, 31 (2017).CrossRef
64.
Zurück zum Zitat K. Tanaka, K. Ohga, C.-K. Choo, and R. Nakata, Sm-doped CdWO4 thin films synthesized by pulsed laser deposition. J. Appl. Phys. 90(10), 5369 (2001).CrossRef K. Tanaka, K. Ohga, C.-K. Choo, and R. Nakata, Sm-doped CdWO4 thin films synthesized by pulsed laser deposition. J. Appl. Phys. 90(10), 5369 (2001).CrossRef
65.
Zurück zum Zitat Sczancoski, J. C., Li, M. S., Mastelaro, V. R., Longo, E., & Cavalcante, L. S., Morphology and optical properties of SrWO4 powders synthesized by the coprecipitation and polymeric precursor methods. Recent Adv. Complex Funct. Mater., 131-54 (2017) Sczancoski, J. C., Li, M. S., Mastelaro, V. R., Longo, E., & Cavalcante, L. S., Morphology and optical properties of SrWO4 powders synthesized by the coprecipitation and polymeric precursor methods. Recent Adv. Complex Funct. Mater., 131-54 (2017)
66.
Zurück zum Zitat S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, T. Badapanda, S. Panigrahi, M. Siu Li, and E. Longo, Photoluminescence property of powders prepared by solid state reaction and polymeric precursor method. Phys. B 404(20), 3341 (2009).CrossRef S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, T. Badapanda, S. Panigrahi, M. Siu Li, and E. Longo, Photoluminescence property of powders prepared by solid state reaction and polymeric precursor method. Phys. B 404(20), 3341 (2009).CrossRef
67.
Zurück zum Zitat G.H. Li, Y. Zhang, Y.C. Wu, and L.D. Zhang, Wavelength dependent photoluminescence of anodic alumina membranes. J. Phys. Condens. Matter. 15(49), 8663 (2003).CrossRef G.H. Li, Y. Zhang, Y.C. Wu, and L.D. Zhang, Wavelength dependent photoluminescence of anodic alumina membranes. J. Phys. Condens. Matter. 15(49), 8663 (2003).CrossRef
68.
Zurück zum Zitat Y. Du, W.L. Cai, C.M. Mo, J. Chen, L.D. Zhang, and X.G. Zhu, Preparation and photoluminescence of alumina membranes with ordered pore arrays. Appl. Phys. Lett. 74(20), 2951 (1999).CrossRef Y. Du, W.L. Cai, C.M. Mo, J. Chen, L.D. Zhang, and X.G. Zhu, Preparation and photoluminescence of alumina membranes with ordered pore arrays. Appl. Phys. Lett. 74(20), 2951 (1999).CrossRef
69.
Zurück zum Zitat I. Rabani, J. Yoo, H.-S. Kim, D.V. Lam, S. Hussain, K. Karuppasamy, and Y.S. Seo, Highly dispersive Co3O4 nanoparticles incorporated in a cellulose nanofiber for a high performance flexible supercapacitor. Nanoscale 13(1), 355–370 (2021).CrossRef I. Rabani, J. Yoo, H.-S. Kim, D.V. Lam, S. Hussain, K. Karuppasamy, and Y.S. Seo, Highly dispersive Co3O4 nanoparticles incorporated in a cellulose nanofiber for a high performance flexible supercapacitor. Nanoscale 13(1), 355–370 (2021).CrossRef
70.
Zurück zum Zitat I. Rabani, Y.-J. Park, J.-W. Lee, M.S. Tahir, A. Kumar, and Y.-S. Seo, J. Mater. Chem. A 10, 15580 (2022).CrossRef I. Rabani, Y.-J. Park, J.-W. Lee, M.S. Tahir, A. Kumar, and Y.-S. Seo, J. Mater. Chem. A 10, 15580 (2022).CrossRef
71.
Zurück zum Zitat I. Rabani, R. Zafar, K. Subalakshmi, H.-S. Kim, C. Bathula, and Y.-S. Seo, J. Hazard. Mater. 407, 124360 (2021).CrossRef I. Rabani, R. Zafar, K. Subalakshmi, H.-S. Kim, C. Bathula, and Y.-S. Seo, J. Hazard. Mater. 407, 124360 (2021).CrossRef
72.
Zurück zum Zitat I. Rabani, K. Karuppasamy, D. Vikraman, H.-S. Kim, and Y.-S. Seo, J. Alloy. Compd. 875, 160074 (2021).CrossRef I. Rabani, K. Karuppasamy, D. Vikraman, H.-S. Kim, and Y.-S. Seo, J. Alloy. Compd. 875, 160074 (2021).CrossRef
73.
Zurück zum Zitat I. Rabani, A. Younus, S. Patil, and Y.-S. Seo, Dalton Trans. 51, 14190 (2022).CrossRef I. Rabani, A. Younus, S. Patil, and Y.-S. Seo, Dalton Trans. 51, 14190 (2022).CrossRef
74.
Zurück zum Zitat I. Rabani, S. Hussain, D. Vikraman, Y.-S. Seo, J. Jung, A. Jana, N.K. Shrestha, M. Jalalah, Y.-Y. Noh, and S.A. Patil, Dalton Trans. 49, 14191 (2020).CrossRef I. Rabani, S. Hussain, D. Vikraman, Y.-S. Seo, J. Jung, A. Jana, N.K. Shrestha, M. Jalalah, Y.-Y. Noh, and S.A. Patil, Dalton Trans. 49, 14191 (2020).CrossRef
75.
Zurück zum Zitat I. Rabani, J. Yoo, C. Bathula, S. Hussain, and Y.-S. Seo, J. Mater. Chem. A9, 11580–11594 (2021).CrossRef I. Rabani, J. Yoo, C. Bathula, S. Hussain, and Y.-S. Seo, J. Mater. Chem. A9, 11580–11594 (2021).CrossRef
76.
Zurück zum Zitat W.G. Nunes, B.G. Freitas, R.M. Beraldo, L.M. Da Silva, and H. Zanin, Sci. Rep. 10, 1 (2020).CrossRef W.G. Nunes, B.G. Freitas, R.M. Beraldo, L.M. Da Silva, and H. Zanin, Sci. Rep. 10, 1 (2020).CrossRef
77.
Zurück zum Zitat J. Park and G.H. An, Interface-engineered electrode and electrolyte for the improved energy-storing performance and stable mechanical flexibility of fibrous supercapacitors. Appl. Surf. Sci. 549, 149326 (2021).CrossRef J. Park and G.H. An, Interface-engineered electrode and electrolyte for the improved energy-storing performance and stable mechanical flexibility of fibrous supercapacitors. Appl. Surf. Sci. 549, 149326 (2021).CrossRef
78.
Zurück zum Zitat F. Kang, Y. Hu, L. Chen, X. Wang, and H. Wu, Influence of Zn2+ and Si4+ codoping on luminescence properties of CaWO4:Eu3+ phosphor. Mater. Sci. and Eng. B 178(7), 477 (2013).CrossRef F. Kang, Y. Hu, L. Chen, X. Wang, and H. Wu, Influence of Zn2+ and Si4+ codoping on luminescence properties of CaWO4:Eu3+ phosphor. Mater. Sci. and Eng. B 178(7), 477 (2013).CrossRef
79.
Zurück zum Zitat A.K. Chauhan, Czochralski growth and radiation hardness of BaWO4 crystals. J. Cryst. Growth 254, 418–422 (2003).CrossRef A.K. Chauhan, Czochralski growth and radiation hardness of BaWO4 crystals. J. Cryst. Growth 254, 418–422 (2003).CrossRef
80.
Zurück zum Zitat R. Yuan, X. Fu, X. Wang, P. Liu, L. Wu, Y. Xu, and Z. Wang, Template synthesis of hollow metal oxide fibers with hierarchical architecture. Chem. Mater 18(19), 4700 (2006).CrossRef R. Yuan, X. Fu, X. Wang, P. Liu, L. Wu, Y. Xu, and Z. Wang, Template synthesis of hollow metal oxide fibers with hierarchical architecture. Chem. Mater 18(19), 4700 (2006).CrossRef
81.
Zurück zum Zitat Y. Zheng, X. Lin, Q. Wang, W. Cai, and C.C. Zhang, Dibenzoyl-l-cystine as organic directing agent for assembly of visible-light-sensitized luminescent AgGd(MoO4)2:Eu3+ nanowires. Mater. Res. Bull. 47(3), 856 (2012).CrossRef Y. Zheng, X. Lin, Q. Wang, W. Cai, and C.C. Zhang, Dibenzoyl-l-cystine as organic directing agent for assembly of visible-light-sensitized luminescent AgGd(MoO4)2:Eu3+ nanowires. Mater. Res. Bull. 47(3), 856 (2012).CrossRef
82.
Zurück zum Zitat M. Arab, A.L. Lopes-Moriyama, T.R. dos Santos, C.P. de Souza, J.R. Gavarri, and C. Leroux, Strontium and cerium tungstate materials SrWO4 and Ce2(WO4)3: Methane oxidation and mixed conduction. Catal. Today 208, 35 (2013).CrossRef M. Arab, A.L. Lopes-Moriyama, T.R. dos Santos, C.P. de Souza, J.R. Gavarri, and C. Leroux, Strontium and cerium tungstate materials SrWO4 and Ce2(WO4)3: Methane oxidation and mixed conduction. Catal. Today 208, 35 (2013).CrossRef
83.
Zurück zum Zitat L.S. Cavalcante, J.C. Sczancoski, L.F. Lima, J.W.M. Espinosa, P.S. Pizani, J.A. Varela, and E. Longo, Synthesis, characterization, anisotropic growth and photoluminescence of BaWO4. Cryst. Growth Des. 9(2), 1002 (2009).CrossRef L.S. Cavalcante, J.C. Sczancoski, L.F. Lima, J.W.M. Espinosa, P.S. Pizani, J.A. Varela, and E. Longo, Synthesis, characterization, anisotropic growth and photoluminescence of BaWO4. Cryst. Growth Des. 9(2), 1002 (2009).CrossRef
84.
Zurück zum Zitat P. Siriwong, T. Thongtem, A. Phuruangrat, and S. Thongtem, Hydrothermal synthesis, characterization, and optical properties of wolframite ZnWO4 nanorods. Cryst. Eng. Comm. 13(5), 1564 (2011).CrossRef P. Siriwong, T. Thongtem, A. Phuruangrat, and S. Thongtem, Hydrothermal synthesis, characterization, and optical properties of wolframite ZnWO4 nanorods. Cryst. Eng. Comm. 13(5), 1564 (2011).CrossRef
85.
Zurück zum Zitat P. Rambabu, K. Sunil, P.D. Srivastava, and G.R. Turpu, rGO-SnO2 Composites for supercapacitor applications IOP Conf. Series Mater. Sci. Eng. 149, 012169 (2016). P. Rambabu, K. Sunil, P.D. Srivastava, and G.R. Turpu, rGO-SnO2 Composites for supercapacitor applications IOP Conf. Series Mater. Sci. Eng. 149, 012169 (2016).
Metadaten
Titel
Comparative Electrochemical, Photocatalytic, and Photoluminescence Studies in SrWO4 and rGO-SrWO4 Nanocomposites
verfasst von
Ch. Sridhar
Neha Sahu
Young-Soo Seo
I. Rabani
G. R. Turpu
Shalinta Tigga
G. Padmaja
Publikationsdatum
21.03.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10342-9

Weitere Artikel der Ausgabe 6/2023

Journal of Electronic Materials 6/2023 Zur Ausgabe