Skip to main content
Erschienen in: Journal of Electronic Materials 6/2023

25.03.2023 | Original Research Article

Molecular Screening of Different π-Linker-Based Organic Dyes for Optoelectronic Applications: Quantum Chemical Study

verfasst von: Arunkumar Ammasi, Ragavan Iruthayaraj, Anbarasan Ponnusamy Munusamy, Mohd Shkir, Balasubramani Vellingiri, Vasudeva Reddy Minnam Reddy, Woo Kyoung Kim

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, metal-free organic dyes (SZ-1–SZ-5) based on phenothiazine (PTZ) as donor (D) unit and different π-conjugated (π) as spacers and acceptors (A) representing cyanoacetic acid (D-π-A) have been investigated to examine their optoelectronic properties by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. A favourable electron transfer into the semiconducting material (TiO2) is effectively obtained by the optimized ground state HOMO-LUMO energy values of the SZ-3 molecule. The photovoltaic (PV) parameters of the oxidation and reduction potential energies (\(E^{dye}\) and \(E^{{dye^{*} }}\)), a driving force of electron injection (\(\Delta G_{inject}\)), dye regeneration (\(\Delta G_{reg}\)), light-harvesting efficiency (LHE), dipole moment (\(\mu_{normal}\)), short-circuit current density (\(J_{SC}\)) and open-circuit photovoltage (\(eV_{OC}\)) were obtained and are discussed in detail. On the other hand, the TD-DFT approach was used to calculate and describe the optical properties of all SZ-1–SZ-5 molecules in terms of absorption energy associated with maximum wavelengths (\(\lambda_{\max }\)), emission spectra (\(\lambda_{emi}\)), oscillator strengths (f) and excitation energies (E). Finally, the theoretical findings represent the various π-spacers in the optoelectronic capabilities of the D-π-A-based dye derivative materials, and they offer useful guidelines for future structures designed for solar cell applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.H. Kim, D.H. Kim, J.H. So, and H.J. Koo, Toward eco-friendly dye-sensitized solar cells (DSSCs): Natural dyes and aqueous electrolytes. Energies 15, 219 (2022).CrossRef J.H. Kim, D.H. Kim, J.H. So, and H.J. Koo, Toward eco-friendly dye-sensitized solar cells (DSSCs): Natural dyes and aqueous electrolytes. Energies 15, 219 (2022).CrossRef
2.
Zurück zum Zitat J. Zou, Y. Wang, G. Baryshnikov, J. Luo, X. Wang, H. Ågren, and C. Li, Xie, Y, Efficient dye-sensitized solar cells based on a new class of doubly concerted companion dyes. ACS Appl. Mater. Interfaces 14, 33274 (2022).CrossRef J. Zou, Y. Wang, G. Baryshnikov, J. Luo, X. Wang, H. Ågren, and C. Li, Xie, Y, Efficient dye-sensitized solar cells based on a new class of doubly concerted companion dyes. ACS Appl. Mater. Interfaces 14, 33274 (2022).CrossRef
3.
Zurück zum Zitat S.C. Pradhan, J. Velore, A. Hagfeldt, and S. Soman, Probing photovoltaic performance in copper electrolyte dye-sensitized solar cells of variable TiO2 particle size using comprehensive interfacial analysis. J. Mater. Chem. C 10, 3929 (2022).CrossRef S.C. Pradhan, J. Velore, A. Hagfeldt, and S. Soman, Probing photovoltaic performance in copper electrolyte dye-sensitized solar cells of variable TiO2 particle size using comprehensive interfacial analysis. J. Mater. Chem. C 10, 3929 (2022).CrossRef
5.
Zurück zum Zitat A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Sci. 334, 629 (2011).CrossRef A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Sci. 334, 629 (2011).CrossRef
6.
Zurück zum Zitat P.M. Anbarasan, A. Arunkumar, and M. Shkir, Computational investigations on efficient metal-free organic D-π-A dyes with different spacers for powerful DSSCs applications. Mol. Simul. 48, 140 (2022).CrossRef P.M. Anbarasan, A. Arunkumar, and M. Shkir, Computational investigations on efficient metal-free organic D-π-A dyes with different spacers for powerful DSSCs applications. Mol. Simul. 48, 140 (2022).CrossRef
7.
Zurück zum Zitat A. Arunkumar and P.M. Anbarasan, Optoelectronic properties of a simple metal-free organic sensitizer with different spacer groups: quantum chemical assessments. J. Electron. Mater. 48, 1522 (2019).CrossRef A. Arunkumar and P.M. Anbarasan, Optoelectronic properties of a simple metal-free organic sensitizer with different spacer groups: quantum chemical assessments. J. Electron. Mater. 48, 1522 (2019).CrossRef
8.
Zurück zum Zitat N. Naeem, R.A. Shehzad, M. Ans, M.S. Akhter, and J. Iqbal, Dopant free triphenylamine-based hole transport materials with excellent photovoltaic properties for high-performance perovskite solar cells. Energy Technol. 10, 2100838 (2022).CrossRef N. Naeem, R.A. Shehzad, M. Ans, M.S. Akhter, and J. Iqbal, Dopant free triphenylamine-based hole transport materials with excellent photovoltaic properties for high-performance perovskite solar cells. Energy Technol. 10, 2100838 (2022).CrossRef
9.
Zurück zum Zitat S.G. Kim, S.H. Lee, I.S. Yang, Y.J. Park, K. Park, J.W. Lee, and N.G. Park, Effect of fluorine substitution in a hole dopant on the photovoltaic performance of perovskite solar cells. ACS Energy Lett. 7, 741 (2022).CrossRef S.G. Kim, S.H. Lee, I.S. Yang, Y.J. Park, K. Park, J.W. Lee, and N.G. Park, Effect of fluorine substitution in a hole dopant on the photovoltaic performance of perovskite solar cells. ACS Energy Lett. 7, 741 (2022).CrossRef
10.
Zurück zum Zitat H. Liu, P. Cheng, Q. Chen, and X. Liu, Modulation of planarity on carbazole derivatives-based hole transport materials for perovskite solar cells: a theoretical and experimental research. J. Electron. Mater. 51, 1778 (2022).CrossRef H. Liu, P. Cheng, Q. Chen, and X. Liu, Modulation of planarity on carbazole derivatives-based hole transport materials for perovskite solar cells: a theoretical and experimental research. J. Electron. Mater. 51, 1778 (2022).CrossRef
11.
Zurück zum Zitat R. Govindarasu, M.K. Subramanian, A. Arunkumar, P.M. Anbarasan, and M. Shkir, D-π-A manufactured organic dye molecules with different spacers for highly efficient reliable DSSCs via computational analysis. Mol. Simul. 48, 584 (2022).CrossRef R. Govindarasu, M.K. Subramanian, A. Arunkumar, P.M. Anbarasan, and M. Shkir, D-π-A manufactured organic dye molecules with different spacers for highly efficient reliable DSSCs via computational analysis. Mol. Simul. 48, 584 (2022).CrossRef
12.
Zurück zum Zitat K.K. Chenab, M.R.Z. Meymian, and S.M. Qashqay, Charge recombination suppression in dye-sensitized solar cells by tuning the dielectric constant of triphenylamine dyes with altering π-bridges from naphthalene to anthracene units. Phys. Chem. Chem. Phys. 24, 19595 (2022).CrossRef K.K. Chenab, M.R.Z. Meymian, and S.M. Qashqay, Charge recombination suppression in dye-sensitized solar cells by tuning the dielectric constant of triphenylamine dyes with altering π-bridges from naphthalene to anthracene units. Phys. Chem. Chem. Phys. 24, 19595 (2022).CrossRef
13.
Zurück zum Zitat H. Katsuyama, R. Sumita, R. Yamakado, and S. Okada, Reactions introducing 4-cyano-5-dicyanomethylene-2-oxo-3-pyrrolin-3-yl group to 4-ethynyl-N, N-dialkylaniline derivatives and characterization of the resulting dyes. Dyes Pigm. 199, 110103 (2022).CrossRef H. Katsuyama, R. Sumita, R. Yamakado, and S. Okada, Reactions introducing 4-cyano-5-dicyanomethylene-2-oxo-3-pyrrolin-3-yl group to 4-ethynyl-N, N-dialkylaniline derivatives and characterization of the resulting dyes. Dyes Pigm. 199, 110103 (2022).CrossRef
14.
Zurück zum Zitat S.M. Wagalgave, M. Al-Kobaisi, S.V. Bhosale, and S.V. Bhosale, Donor-acceptor-donor π-conjugated material derived from merocyanine-diketopyrrolopyrrole: design, synthesis and photovoltaic applications. J. Electroanal. Chem. 915, 116341 (2022).CrossRef S.M. Wagalgave, M. Al-Kobaisi, S.V. Bhosale, and S.V. Bhosale, Donor-acceptor-donor π-conjugated material derived from merocyanine-diketopyrrolopyrrole: design, synthesis and photovoltaic applications. J. Electroanal. Chem. 915, 116341 (2022).CrossRef
15.
Zurück zum Zitat M.S. Ebied, M. Dongol, M. Ibrahim, M. Nassary, S. Elnobi, and A.A. Abuelwafa, Structural and optical properties of nanocrystalline 3-(2-benzothiazolyl)-7-(diethylamino) coumarin (C6) thin films for optoelectronic application. J. Electron. Mater. 51, 5770 (2022).CrossRef M.S. Ebied, M. Dongol, M. Ibrahim, M. Nassary, S. Elnobi, and A.A. Abuelwafa, Structural and optical properties of nanocrystalline 3-(2-benzothiazolyl)-7-(diethylamino) coumarin (C6) thin films for optoelectronic application. J. Electron. Mater. 51, 5770 (2022).CrossRef
16.
Zurück zum Zitat R. Pradhan, A. Agrawal, B.P. Bag, R. Singhal, G.D. Sharma, and A. Mishra, High-efficiency ternary organic solar cells enabled by synergizing dicyanomethylene-functionalized coumarin donors and fullerene-free acceptors. ACS Appl. Energy Mater. 5, 9020 (2022).CrossRef R. Pradhan, A. Agrawal, B.P. Bag, R. Singhal, G.D. Sharma, and A. Mishra, High-efficiency ternary organic solar cells enabled by synergizing dicyanomethylene-functionalized coumarin donors and fullerene-free acceptors. ACS Appl. Energy Mater. 5, 9020 (2022).CrossRef
17.
Zurück zum Zitat M.L. Han, Y.Z. Zhu, S. Liu, Q.L. Liu, D. Ye, B. Wang, and J.Y. Zheng, The improved photovoltaic performance of phenothiazine-dithienopyrrole based dyes with auxiliary acceptors. J. Power Sources 387, 117 (2018).CrossRef M.L. Han, Y.Z. Zhu, S. Liu, Q.L. Liu, D. Ye, B. Wang, and J.Y. Zheng, The improved photovoltaic performance of phenothiazine-dithienopyrrole based dyes with auxiliary acceptors. J. Power Sources 387, 117 (2018).CrossRef
18.
Zurück zum Zitat Z.S. Huang, C. Cai, X.F. Zang, Z. Iqbal, H. Zeng, D.B. Kuang, L. Wang, H. Meier, and D. Cao, Effect of the linkage location in double branched organic dyes on the photovoltaic performance of DSSCs. J. Mater. Chem. A 3, 1333 (2015).CrossRef Z.S. Huang, C. Cai, X.F. Zang, Z. Iqbal, H. Zeng, D.B. Kuang, L. Wang, H. Meier, and D. Cao, Effect of the linkage location in double branched organic dyes on the photovoltaic performance of DSSCs. J. Mater. Chem. A 3, 1333 (2015).CrossRef
19.
Zurück zum Zitat A. Arunkumar, M. Deepana, S. Shanavas, R. Acevedo, and P.M. Anbarasan, Computational investigation on series of metal-free sensitizers in tetrahydroquinoline with different π-spacer Groups for DSSCs. ChemistrySelect 4, 4097 (2019).CrossRef A. Arunkumar, M. Deepana, S. Shanavas, R. Acevedo, and P.M. Anbarasan, Computational investigation on series of metal-free sensitizers in tetrahydroquinoline with different π-spacer Groups for DSSCs. ChemistrySelect 4, 4097 (2019).CrossRef
20.
Zurück zum Zitat M.Y. Mehboob, R. Hussain, M.U. Khan, M. Adnan, M.A. Ehsan, A. Rehman, and M.R.S.A. Janjua, Quantum chemical design of near-infrared sensitive fused ring electron acceptors containing selenophene as π-bridge for high-performance organic solar cells. J. Phys. Org. Chem. 34, 4204 (2021).CrossRef M.Y. Mehboob, R. Hussain, M.U. Khan, M. Adnan, M.A. Ehsan, A. Rehman, and M.R.S.A. Janjua, Quantum chemical design of near-infrared sensitive fused ring electron acceptors containing selenophene as π-bridge for high-performance organic solar cells. J. Phys. Org. Chem. 34, 4204 (2021).CrossRef
21.
Zurück zum Zitat M. Rafiq, M. Salim, S. Noreen, R.A. Khera, S. Noor, U. Yaqoob, and J. Iqbal, End-capped modification of dithienosilole based small donor molecules for high performance organic solar cells using DFT approach. J. Mol. Liq. 345, 118138 (2022).CrossRef M. Rafiq, M. Salim, S. Noreen, R.A. Khera, S. Noor, U. Yaqoob, and J. Iqbal, End-capped modification of dithienosilole based small donor molecules for high performance organic solar cells using DFT approach. J. Mol. Liq. 345, 118138 (2022).CrossRef
22.
Zurück zum Zitat M.U. Khan, R. Hussain, M.Y. Mehboob, M. Khalid, M.A. Ehsan, A. Rehman, and M.R.S.A. Janjua, First theoretical framework of Z-shaped acceptor materials with fused-chrysene core for high performance organic solar cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 245, 118938 (2021).CrossRef M.U. Khan, R. Hussain, M.Y. Mehboob, M. Khalid, M.A. Ehsan, A. Rehman, and M.R.S.A. Janjua, First theoretical framework of Z-shaped acceptor materials with fused-chrysene core for high performance organic solar cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 245, 118938 (2021).CrossRef
23.
Zurück zum Zitat D.D.Y. Setsoafia, K.S. Ram, H. Mehdizadeh-Rad, D. Ompong, V. Murthy, and J. Singh, DFT and TD-DFT calculations of orbital energies and photovoltaic properties of small molecule donor and acceptor materials used in organic solar cells. J. Renew. Mater. 10, 2553 (2022).CrossRef D.D.Y. Setsoafia, K.S. Ram, H. Mehdizadeh-Rad, D. Ompong, V. Murthy, and J. Singh, DFT and TD-DFT calculations of orbital energies and photovoltaic properties of small molecule donor and acceptor materials used in organic solar cells. J. Renew. Mater. 10, 2553 (2022).CrossRef
24.
Zurück zum Zitat M. Rani, J. Iqbal, R.F. Mehmood, E.U. Rashid, S. Rani, M. Raheel, and R.A. Khera, Strategies toward the end-group modifications of indacenodithiophene based non-fullerene small molecule acceptor to improve the efficiency of Organic solar Cells; a DFT study. Comput. Theor. Chem. 113747 (2022). M. Rani, J. Iqbal, R.F. Mehmood, E.U. Rashid, S. Rani, M. Raheel, and R.A. Khera, Strategies toward the end-group modifications of indacenodithiophene based non-fullerene small molecule acceptor to improve the efficiency of Organic solar Cells; a DFT study. Comput. Theor. Chem. 113747 (2022).
25.
Zurück zum Zitat M.R. Janjua, Theoretical understanding and role of guest π-bridges in triphenylamine-based donor materials for high-performance solar cells. Energ. Fuel. 35, 12451 (2021).CrossRef M.R. Janjua, Theoretical understanding and role of guest π-bridges in triphenylamine-based donor materials for high-performance solar cells. Energ. Fuel. 35, 12451 (2021).CrossRef
26.
Zurück zum Zitat A. Arunkumar, S. Shanavas, and P.M. Anbarasan, First-principles study of efficient phenothiazine-based D-π-A organic sensitizers with various spacers for DSSCs. J. Comput. Electron. 17, 1410 (2018).CrossRef A. Arunkumar, S. Shanavas, and P.M. Anbarasan, First-principles study of efficient phenothiazine-based D-π-A organic sensitizers with various spacers for DSSCs. J. Comput. Electron. 17, 1410 (2018).CrossRef
27.
Zurück zum Zitat D. Nebbach, F. Agda, S. Kaya, F. Siddique, T. Lakhlifi, M.A. Ajana, and M. Bouachrine, Non-fullerene acceptor IDIC based on indacinodithiophene used as an electron donor for organic solar cells: a computational study. J. Mol. Liq. 348, 118289 (2022).CrossRef D. Nebbach, F. Agda, S. Kaya, F. Siddique, T. Lakhlifi, M.A. Ajana, and M. Bouachrine, Non-fullerene acceptor IDIC based on indacinodithiophene used as an electron donor for organic solar cells: a computational study. J. Mol. Liq. 348, 118289 (2022).CrossRef
28.
Zurück zum Zitat A. Arunkumar, M. Prakasam, and P.M. Anbarasan, Influence of donor substitution at D-π-A architecture in efficient sensitizers for dye-sensitized solar cells: first-principle study. Bull. Mater. Sci. 40, 1389 (2017).CrossRef A. Arunkumar, M. Prakasam, and P.M. Anbarasan, Influence of donor substitution at D-π-A architecture in efficient sensitizers for dye-sensitized solar cells: first-principle study. Bull. Mater. Sci. 40, 1389 (2017).CrossRef
29.
Zurück zum Zitat M. Rani, J. Iqbal, R.F. Mehmood, S.J. Akram, K. Ghaffar, Z.M. El-Bahy, and R.A. Khera, Engineering of A-π-D-π-A system based non-fullerene acceptors to enhance the photovoltaic properties of organic solar cells; A DFT Approach. Chem. Phys. Lett. 139750 (2022). M. Rani, J. Iqbal, R.F. Mehmood, S.J. Akram, K. Ghaffar, Z.M. El-Bahy, and R.A. Khera, Engineering of A-π-D-π-A system based non-fullerene acceptors to enhance the photovoltaic properties of organic solar cells; A DFT Approach. Chem. Phys. Lett. 139750 (2022).
30.
Zurück zum Zitat P.M. Anbarasan, A. Arunkumar, and M. Shkir, Computational analysis of carbazole-based newly efficient D-π-A organic spacer dye derivatives for dye-sensitized solar cells. Struct. Chem. 33, 1097 (2022).CrossRef P.M. Anbarasan, A. Arunkumar, and M. Shkir, Computational analysis of carbazole-based newly efficient D-π-A organic spacer dye derivatives for dye-sensitized solar cells. Struct. Chem. 33, 1097 (2022).CrossRef
31.
Zurück zum Zitat A. Arunkumar, S. Shanavas, R. Acevedo, and P.M. Anbarasan, Computational analysis on D-π-A based perylene organic efficient sensitizer in dye-sensitized solar cells. Opt. Quant. Electron. 52, 1 (2020).CrossRef A. Arunkumar, S. Shanavas, R. Acevedo, and P.M. Anbarasan, Computational analysis on D-π-A based perylene organic efficient sensitizer in dye-sensitized solar cells. Opt. Quant. Electron. 52, 1 (2020).CrossRef
32.
Zurück zum Zitat A. Arunkumar, S. Shanavas, R. Acevedo, and P.M. Anbarasan, Quantum chemical investigation of modified coumarin-based organic efficient sensitizers for optoelectronic applications. Eur. Phys. J. D 74, 1 (2020).CrossRef A. Arunkumar, S. Shanavas, R. Acevedo, and P.M. Anbarasan, Quantum chemical investigation of modified coumarin-based organic efficient sensitizers for optoelectronic applications. Eur. Phys. J. D 74, 1 (2020).CrossRef
33.
Zurück zum Zitat H. Tian, X. Yang, R. Chen, Y. Pan, L. Li, A. Hagfeldt, and L. Sun, Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chem. Commun. 36, 3741 (2007).CrossRef H. Tian, X. Yang, R. Chen, Y. Pan, L. Li, A. Hagfeldt, and L. Sun, Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chem. Commun. 36, 3741 (2007).CrossRef
34.
Zurück zum Zitat X. Zhang, F. Gou, J. Shi, H. Gao, C. Xu, Z. Zhu, and H. Jing, Molecular engineering of new phenothiazine-based D-A-π-A dyes for dye-sensitized solar cells. RSC Adv. 6, 106380 (2016).CrossRef X. Zhang, F. Gou, J. Shi, H. Gao, C. Xu, Z. Zhu, and H. Jing, Molecular engineering of new phenothiazine-based D-A-π-A dyes for dye-sensitized solar cells. RSC Adv. 6, 106380 (2016).CrossRef
35.
Zurück zum Zitat M. Sharma, N. Sharma, P.A. Alvi, S.K. Gupta, and C.M.S. Negi, P3HT-rGO composites for high-performance optoelectronic devices. Opt. Mater. 127, 112326 (2022).CrossRef M. Sharma, N. Sharma, P.A. Alvi, S.K. Gupta, and C.M.S. Negi, P3HT-rGO composites for high-performance optoelectronic devices. Opt. Mater. 127, 112326 (2022).CrossRef
36.
Zurück zum Zitat M. Sharma, P.A. Alvi, S.K. Gupta, and C.M.S. Negi, The optoelectronic behavior of reduce graphene oxide-carbon nanotube nanocomposites. Synth. Met. 281, 116892 (2021).CrossRef M. Sharma, P.A. Alvi, S.K. Gupta, and C.M.S. Negi, The optoelectronic behavior of reduce graphene oxide-carbon nanotube nanocomposites. Synth. Met. 281, 116892 (2021).CrossRef
37.
Zurück zum Zitat K. Sharma, V. Sharma, and S.S. Sharma, Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res. Lett. 13, 1 (2018).CrossRef K. Sharma, V. Sharma, and S.S. Sharma, Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res. Lett. 13, 1 (2018).CrossRef
38.
Zurück zum Zitat M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09 (Wallingford: Gaussian Inc., 2009). M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09 (Wallingford: Gaussian Inc., 2009).
40.
Zurück zum Zitat C. Lee, W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).CrossRef C. Lee, W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).CrossRef
41.
Zurück zum Zitat M.A. Kern, D. Schubert, D. Sahi, M.M. Schöneweiß, I. Moll, A.M. Haugg, H.P. Dienes, K. Breuhahn, and P. Schirmacher, Proapoptotic and antiproliferative potential of selective cyclooxygenase-2 inhibitors in human liver tumor cells. Hepatol. 36, 885 (2002). M.A. Kern, D. Schubert, D. Sahi, M.M. Schöneweiß, I. Moll, A.M. Haugg, H.P. Dienes, K. Breuhahn, and P. Schirmacher, Proapoptotic and antiproliferative potential of selective cyclooxygenase-2 inhibitors in human liver tumor cells. Hepatol. 36, 885 (2002).
42.
Zurück zum Zitat N. Bhala, J. Emberson, A. Merhi, S. Abramson, N. Arber, J.A. Baron, C. Bombardier, C. Cannon, M.E. Farkouh, G.A. FitzGerald, and P. Goss, Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet 382, 769 (2013).CrossRef N. Bhala, J. Emberson, A. Merhi, S. Abramson, N. Arber, J.A. Baron, C. Bombardier, C. Cannon, M.E. Farkouh, G.A. FitzGerald, and P. Goss, Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet 382, 769 (2013).CrossRef
43.
Zurück zum Zitat G. Maroulis and A.J. Thakkar, Polarizabilities and hyperpolarizabilities of carbon dioxide. J. Chern. Phys. 93, 4164 (1990).CrossRef G. Maroulis and A.J. Thakkar, Polarizabilities and hyperpolarizabilities of carbon dioxide. J. Chern. Phys. 93, 4164 (1990).CrossRef
44.
Zurück zum Zitat T. Marinado, K. Nonomura, J. Nissfolk, M.K. Karlsson, D.P. Hagberg, L. Sun, S. Mori, and A. Hagfeldt, How the nature of triphenylamine-polyene dyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes. Langmuir 26, 2592 (2010).CrossRef T. Marinado, K. Nonomura, J. Nissfolk, M.K. Karlsson, D.P. Hagberg, L. Sun, S. Mori, and A. Hagfeldt, How the nature of triphenylamine-polyene dyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes. Langmuir 26, 2592 (2010).CrossRef
45.
Zurück zum Zitat S. Rühle, M. Greenshtein, S.G. Chen, A. Merson, H. Pizem, C.S. Sukenik, D. Cahen, and A. Zaban, Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells. J. Phys. Chem. B 109, 18907 (2005).CrossRef S. Rühle, M. Greenshtein, S.G. Chen, A. Merson, H. Pizem, C.S. Sukenik, D. Cahen, and A. Zaban, Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells. J. Phys. Chem. B 109, 18907 (2005).CrossRef
46.
Zurück zum Zitat R. Tarsang, V. Promarak, T. Sudyoadsuk, S. Namuangruk, N. Kungwan, P. Khongpracha, and S. Jungsuttiwong, Triple bond-modified anthracene sensitizers for dye-sensitized solar cells: a computational study. RSC Adv. 5, 38130 (2015).CrossRef R. Tarsang, V. Promarak, T. Sudyoadsuk, S. Namuangruk, N. Kungwan, P. Khongpracha, and S. Jungsuttiwong, Triple bond-modified anthracene sensitizers for dye-sensitized solar cells: a computational study. RSC Adv. 5, 38130 (2015).CrossRef
47.
Zurück zum Zitat J. Zhang, H.B. Li, S.L. Sun, Y. Geng, Y. Wu, and Z.M. Su, Density functional theory characterization and design of high-performance diarylamine-fluorene dyes with different π spacers for dye-sensitized solar cells. J. Mater. Chem. 22, 568 (2012).CrossRef J. Zhang, H.B. Li, S.L. Sun, Y. Geng, Y. Wu, and Z.M. Su, Density functional theory characterization and design of high-performance diarylamine-fluorene dyes with different π spacers for dye-sensitized solar cells. J. Mater. Chem. 22, 568 (2012).CrossRef
48.
Zurück zum Zitat J. Preat, D. Jacquemin, C. Michaux, and E.A. Perpète, Improvement of the efficiency of thiophene-bridged compounds for dye-sensitized solar cells. Chem. Phys. 376, 56 (2010).CrossRef J. Preat, D. Jacquemin, C. Michaux, and E.A. Perpète, Improvement of the efficiency of thiophene-bridged compounds for dye-sensitized solar cells. Chem. Phys. 376, 56 (2010).CrossRef
49.
Zurück zum Zitat A. Islam, H. Sugihara, and H. Arakawa, Molecular design of ruthenium (II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells. J. Photochem. Photobiol. A: Chem. 158, 131 (2003).CrossRef A. Islam, H. Sugihara, and H. Arakawa, Molecular design of ruthenium (II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells. J. Photochem. Photobiol. A: Chem. 158, 131 (2003).CrossRef
50.
Zurück zum Zitat R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, and M. Tachiya, Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B 108, 4818 (2004).CrossRef R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, and M. Tachiya, Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B 108, 4818 (2004).CrossRef
51.
Zurück zum Zitat Z. Ning, Q. Zhang, W. Wu, H. Pei, B. Liu, and H. Tian, Starburst triarylamine based dyes for efficient dye-sensitized solar cells. J. Org. Chem. 73, 3791 (2008).CrossRef Z. Ning, Q. Zhang, W. Wu, H. Pei, B. Liu, and H. Tian, Starburst triarylamine based dyes for efficient dye-sensitized solar cells. J. Org. Chem. 73, 3791 (2008).CrossRef
52.
Zurück zum Zitat T. Daeneke, A.J. Mozer, Y. Uemura, S. Makuta, M. Fekete, Y. Tachibana, N. Koumura, U. Bach, and L. Spiccia, Dye regeneration kinetics in dye-sensitized solar cells. J. Am. Chem. Soc. 134, 16925 (2012).CrossRef T. Daeneke, A.J. Mozer, Y. Uemura, S. Makuta, M. Fekete, Y. Tachibana, N. Koumura, U. Bach, and L. Spiccia, Dye regeneration kinetics in dye-sensitized solar cells. J. Am. Chem. Soc. 134, 16925 (2012).CrossRef
53.
Zurück zum Zitat K.C.D. Robson, K. Hu, G.J. Meyer, and C.P. Berlinguette, Atomic level resolution of dye regeneration in the dye-sensitized solar cell. J. Am. Chem. Soc. 135, 1961 (2013).CrossRef K.C.D. Robson, K. Hu, G.J. Meyer, and C.P. Berlinguette, Atomic level resolution of dye regeneration in the dye-sensitized solar cell. J. Am. Chem. Soc. 135, 1961 (2013).CrossRef
54.
Zurück zum Zitat Y. Liu, G. Yang, S. Sun, and Z. Su, Density functional theory investigation on the second-order nonlinear optical properties of chlorobenzyl-o-carborane derivatives. Chin. J. Chem. 30, 2349 (2012).CrossRef Y. Liu, G. Yang, S. Sun, and Z. Su, Density functional theory investigation on the second-order nonlinear optical properties of chlorobenzyl-o-carborane derivatives. Chin. J. Chem. 30, 2349 (2012).CrossRef
55.
Zurück zum Zitat B. Peng, S. Yang, L. Li, F. Cheng, and J. Chen, A density functional theory and time-dependent density functional theory investigation on the anchor comparison of triarylamine-based dyes. J. Chem. Phys. 132, 034305 (2009).CrossRef B. Peng, S. Yang, L. Li, F. Cheng, and J. Chen, A density functional theory and time-dependent density functional theory investigation on the anchor comparison of triarylamine-based dyes. J. Chem. Phys. 132, 034305 (2009).CrossRef
Metadaten
Titel
Molecular Screening of Different π-Linker-Based Organic Dyes for Optoelectronic Applications: Quantum Chemical Study
verfasst von
Arunkumar Ammasi
Ragavan Iruthayaraj
Anbarasan Ponnusamy Munusamy
Mohd Shkir
Balasubramani Vellingiri
Vasudeva Reddy Minnam Reddy
Woo Kyoung Kim
Publikationsdatum
25.03.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10338-5

Weitere Artikel der Ausgabe 6/2023

Journal of Electronic Materials 6/2023 Zur Ausgabe