Skip to main content
Erschienen in: Journal of Electronic Materials 6/2023

11.04.2023 | Original Research Article

Dual-Mode Metamaterial Absorber for Independent Sweat and Temperature Sensing

verfasst von: Zhirong Li, Min Zhong, Liangyun Zang, Haiyan Ye

Erschienen in: Journal of Electronic Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metamaterial absorbers are increasingly studied and applied in sensing, telemedicine, and health monitoring applications. At present, many reported metamaterial-based sensors often exhibit the characteristics of single or multiple resonance modes. However, the sensing characteristics of these multi-mode metamaterial sensors are not independent. Here, a multi-mode metamaterial sensor (localized surface plasmon (LSP) resonance mode, dielectric loss mode) is measured and analyzed. In measurements, absorption peak P1 is sensitive to the thickness of the dielectric layer, while the absorption peak P2 is associated with lattice constant. The metamaterial sensor exhibits dual sensing capabilities for both temperature and sweat. When the metamaterial sensor is covered with sweat (the temperature remains unchanged), peak P2 is strengthened and moved to the low-frequency region, while peak P1 is basically unchanged. When the temperature is increased (the metamaterial sample is not covered by sweat), peak P1 is strengthened and moved to the low-frequency region, while peak P2 is basically unchanged. When the concentration components in sweat and temperature are increased synchronously, peaks P1 and P2 are increased simultaneously. Peak P1 is moved to the high-frequency region, while peak P2 is shifted to the low-frequency region. This proposed metamaterial sensor shows both independent and dual sensing properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698 (2007).CrossRef N. Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698 (2007).CrossRef
2.
Zurück zum Zitat D.R. Smith, J.B. Pendry, and M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305, 788 (2004).CrossRef D.R. Smith, J.B. Pendry, and M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305, 788 (2004).CrossRef
3.
Zurück zum Zitat W. Cai and V.M. Shalaev, Optical Metamaterials: Fundamentals and Applications (Cham: Springer, 2009). W. Cai and V.M. Shalaev, Optical Metamaterials: Fundamentals and Applications (Cham: Springer, 2009).
4.
Zurück zum Zitat L.L. Huang, X.Z. Chen, H. Mühlenbernd, H. Zhang, S.M. Chen, B.F. Bai, Q.F. Tan, G.F. Jin, K.W. Cheah, C.W. Qiu, J.S. Li, T. Zentgraf, and S. Zhang, Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).CrossRef L.L. Huang, X.Z. Chen, H. Mühlenbernd, H. Zhang, S.M. Chen, B.F. Bai, Q.F. Tan, G.F. Jin, K.W. Cheah, C.W. Qiu, J.S. Li, T. Zentgraf, and S. Zhang, Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).CrossRef
5.
Zurück zum Zitat X. Ni, A.V. Kildishev, and V.M. Shalaev, Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013).CrossRef X. Ni, A.V. Kildishev, and V.M. Shalaev, Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013).CrossRef
6.
Zurück zum Zitat K. Huang, Z.G. Dong, S.T. Mei, L. Zhang, Y.J. Liu, H. Liu, H.B. Zhu, J.H. Teng, B. Luk’yanchuk, J.K.W. Yang, and C.W. Qiu, Silicon multi-meta-holograms for the broadband visible light. Laser Photon. Rev. 10, 500 (2016).CrossRef K. Huang, Z.G. Dong, S.T. Mei, L. Zhang, Y.J. Liu, H. Liu, H.B. Zhu, J.H. Teng, B. Luk’yanchuk, J.K.W. Yang, and C.W. Qiu, Silicon multi-meta-holograms for the broadband visible light. Laser Photon. Rev. 10, 500 (2016).CrossRef
7.
Zurück zum Zitat S. Larouche, Y.J. Tsai, T. Tyler, N.M. Jokerst, and D.R. Smith, Infrared metamaterial phase holograms. Nat. Mater. 11, 450 (2012).CrossRef S. Larouche, Y.J. Tsai, T. Tyler, N.M. Jokerst, and D.R. Smith, Infrared metamaterial phase holograms. Nat. Mater. 11, 450 (2012).CrossRef
8.
Zurück zum Zitat N.F. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011).CrossRef N.F. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011).CrossRef
9.
Zurück zum Zitat S.L. Sun, K.Y. Yang, C.M. Wang, T.K. Juan, W.T. Chen, C.Y. Liao, Q. He, S.Y. Xiao, W.T. Kung, G.Y. Guo, L. Zhou, and D.P. Tsai, High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223 (2012).CrossRef S.L. Sun, K.Y. Yang, C.M. Wang, T.K. Juan, W.T. Chen, C.Y. Liao, Q. He, S.Y. Xiao, W.T. Kung, G.Y. Guo, L. Zhou, and D.P. Tsai, High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223 (2012).CrossRef
10.
Zurück zum Zitat Z.Y. Wei, Y. Cao, X.P. Su, Z.J. Gong, Y. Long, and H.Q. Li, Highly efficient beam steering with a transparent metasurface. Opt. Express 21, 10739 (2013).CrossRef Z.Y. Wei, Y. Cao, X.P. Su, Z.J. Gong, Y. Long, and H.Q. Li, Highly efficient beam steering with a transparent metasurface. Opt. Express 21, 10739 (2013).CrossRef
11.
Zurück zum Zitat C. Pfeiffer and A. Grbic, Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013).CrossRef C. Pfeiffer and A. Grbic, Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013).CrossRef
12.
Zurück zum Zitat J.B. Pendry, D. Schurig, and D.R. Smith, Controlling electromagnetic fields. Science 312, 1780 (2006).CrossRef J.B. Pendry, D. Schurig, and D.R. Smith, Controlling electromagnetic fields. Science 312, 1780 (2006).CrossRef
13.
Zurück zum Zitat M. Fridman, A. Farsi, Y. Okawachi, and A.L. Gaeta, Demonstration of temporal cloaking. Nature 481, 62 (2012).CrossRef M. Fridman, A. Farsi, Y. Okawachi, and A.L. Gaeta, Demonstration of temporal cloaking. Nature 481, 62 (2012).CrossRef
14.
Zurück zum Zitat N.F. Yu, P. Genevet, M. Kats, and F. Aieta, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011).CrossRef N.F. Yu, P. Genevet, M. Kats, and F. Aieta, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011).CrossRef
15.
Zurück zum Zitat N. Yu and F. Capasso, Flat optics with designer metasurfaces. Nat. Mater. 13, 139 (2014).CrossRef N. Yu and F. Capasso, Flat optics with designer metasurfaces. Nat. Mater. 13, 139 (2014).CrossRef
16.
Zurück zum Zitat H. Wakatsuchi and C. Christopoulos, Generalized scattering control using cut-wire-based metamaterials. Appl. Phys. Lett. 98, 221105 (2011).CrossRef H. Wakatsuchi and C. Christopoulos, Generalized scattering control using cut-wire-based metamaterials. Appl. Phys. Lett. 98, 221105 (2011).CrossRef
17.
Zurück zum Zitat R.W. Ziolkowski, P. Jin, and C.-C. Lin, Metamaterial-inspired engineering of antennas. Proc. IEEE 99, 1720 (2011).CrossRef R.W. Ziolkowski, P. Jin, and C.-C. Lin, Metamaterial-inspired engineering of antennas. Proc. IEEE 99, 1720 (2011).CrossRef
18.
Zurück zum Zitat H. Wakatsuchi, S. Greedy, C. Christopoulos, and J. Paul, Customised broadband metamaterial absorbers for arbitrary polarisation. Opt. Express 18, 22187 (2010).CrossRef H. Wakatsuchi, S. Greedy, C. Christopoulos, and J. Paul, Customised broadband metamaterial absorbers for arbitrary polarisation. Opt. Express 18, 22187 (2010).CrossRef
19.
Zurück zum Zitat H. Wakatsuchi, J. Paul, and C. Christopoulos, Performance of customizable cut-wire-based metamaterial absorbers: absorbing mechanism and experimental demonstration. IEEE Trans. Antennas Propag. 60, 5743 (2012).CrossRef H. Wakatsuchi, J. Paul, and C. Christopoulos, Performance of customizable cut-wire-based metamaterial absorbers: absorbing mechanism and experimental demonstration. IEEE Trans. Antennas Propag. 60, 5743 (2012).CrossRef
20.
Zurück zum Zitat S. Kang, Z.Y. Qian, V. Rajaram, A. Alu, and M. Rinaldi, Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems, in International Conference on Solid State Sensors Actuators and Microsystems, (Seoul, South Korea, 2005), pp. 886 S. Kang, Z.Y. Qian, V. Rajaram, A. Alu, and M. Rinaldi, Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems, in International Conference on Solid State Sensors Actuators and Microsystems, (Seoul, South Korea, 2005), pp. 886
21.
Zurück zum Zitat H.J. Leea and J.G. Yook, Biosensing using split-ring resonators at microwave regime. Appl. Phys. Lett. 92, 254103 (2018).CrossRef H.J. Leea and J.G. Yook, Biosensing using split-ring resonators at microwave regime. Appl. Phys. Lett. 92, 254103 (2018).CrossRef
22.
Zurück zum Zitat S.B. Mbareka, S. Euphrasiea, T. Barona, L. Thiery, P.L. Vairac, B. Cretin, J.P. Guillet, and L. Chusseau, Room temperature thermophile THz sensor. Sens. Actuators A 193, 155 (2013).CrossRef S.B. Mbareka, S. Euphrasiea, T. Barona, L. Thiery, P.L. Vairac, B. Cretin, J.P. Guillet, and L. Chusseau, Room temperature thermophile THz sensor. Sens. Actuators A 193, 155 (2013).CrossRef
23.
Zurück zum Zitat Y. Shen, J.H. Zhou, T.R. Liu, and Y.T. Tao, Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 4, 2381 (2013).CrossRef Y. Shen, J.H. Zhou, T.R. Liu, and Y.T. Tao, Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 4, 2381 (2013).CrossRef
24.
Zurück zum Zitat C.L. Gomez-Heredia, J.A. Ramirez-Rincon, D. Bhardwaj, P. Rajasekar, I.J. Tadeo, J.L. Cervantes-Lopez, J. Ordonez-Miranda, O. Ares, A.M. Umarji, J. Drevillon, K. Joulain, Y. Ezzahri, and J.J. Alvarado-Gi, Measurement of the hysteretic thermal properties of W-doped and undoped nanocrystalline powders of VO2. Sci. Rep. 9, 14687 (2019).CrossRef C.L. Gomez-Heredia, J.A. Ramirez-Rincon, D. Bhardwaj, P. Rajasekar, I.J. Tadeo, J.L. Cervantes-Lopez, J. Ordonez-Miranda, O. Ares, A.M. Umarji, J. Drevillon, K. Joulain, Y. Ezzahri, and J.J. Alvarado-Gi, Measurement of the hysteretic thermal properties of W-doped and undoped nanocrystalline powders of VO2. Sci. Rep. 9, 14687 (2019).CrossRef
25.
Zurück zum Zitat G.G. Zheng, P. Zhou, and Y.Y. Chen, Dynamically switchable dual-band mid-infrared absorber with phase-change material Ge2Sb2Te5. Opt. Mater. 99, 109581 (2020).CrossRef G.G. Zheng, P. Zhou, and Y.Y. Chen, Dynamically switchable dual-band mid-infrared absorber with phase-change material Ge2Sb2Te5. Opt. Mater. 99, 109581 (2020).CrossRef
26.
Zurück zum Zitat J. Kim, A.S. Campbell, B.E.F. de Avila, and J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389 (2019).CrossRef J. Kim, A.S. Campbell, B.E.F. de Avila, and J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389 (2019).CrossRef
27.
Zurück zum Zitat A.J. Bandodkar, and J. Wang, Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363 (2014).CrossRef A.J. Bandodkar, and J. Wang, Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363 (2014).CrossRef
28.
Zurück zum Zitat Y. Lin, M. Bariya, and A. Jawey, Wearable biosensors for body computing. Adv. Funct. Mater. 31(39), 2008087 (2020).CrossRef Y. Lin, M. Bariya, and A. Jawey, Wearable biosensors for body computing. Adv. Funct. Mater. 31(39), 2008087 (2020).CrossRef
29.
Zurück zum Zitat Y.R. Yang, and W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48(6), 1465 (2019).CrossRef Y.R. Yang, and W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48(6), 1465 (2019).CrossRef
30.
Zurück zum Zitat B.W. Zhong, K. Jiang, L.L. Wang, and G.Z. Shen, Wearable sweat loss measuring devices: from the role of sweat loss to advanced mechanisms and designs. Adv. Sci. 9, 2103257 (2021).CrossRef B.W. Zhong, K. Jiang, L.L. Wang, and G.Z. Shen, Wearable sweat loss measuring devices: from the role of sweat loss to advanced mechanisms and designs. Adv. Sci. 9, 2103257 (2021).CrossRef
31.
Zurück zum Zitat F. Poletti, B. Zanfrognini, L. Favaretto, V. Quintano, J. Sun, E. Treossi, M. Melucci, V. Palermo, and C. Zanardi, Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide. Sens. Actuators B 344, 130253 (2021).CrossRef F. Poletti, B. Zanfrognini, L. Favaretto, V. Quintano, J. Sun, E. Treossi, M. Melucci, V. Palermo, and C. Zanardi, Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide. Sens. Actuators B 344, 130253 (2021).CrossRef
32.
Zurück zum Zitat J. Choi, R. Ghaffari, L.B. Baker, and J.A. Rogers, Skin-interfaced systems for sweat collection and analytics. Adv. Sci. 4(2), 3921 (2018).CrossRef J. Choi, R. Ghaffari, L.B. Baker, and J.A. Rogers, Skin-interfaced systems for sweat collection and analytics. Adv. Sci. 4(2), 3921 (2018).CrossRef
33.
Zurück zum Zitat H.Y. Nyein, M. Bariya, B. Tran, C.H. Ahn, B.J. Brown, W. Ji, N. Davis, and A. Javey, A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 12(1), 1823 (2021).CrossRef H.Y. Nyein, M. Bariya, B. Tran, C.H. Ahn, B.J. Brown, W. Ji, N. Davis, and A. Javey, A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 12(1), 1823 (2021).CrossRef
34.
Zurück zum Zitat J. Chen, H.J. Zhang, G.Q. Liu, J.S. Liu, Y. Liu, L. Tang, and Z.Q. Liu, High-quality temperature sensor based on the plasmonic resonant absorber. Plasmonics 14, 279 (2019).CrossRef J. Chen, H.J. Zhang, G.Q. Liu, J.S. Liu, Y. Liu, L. Tang, and Z.Q. Liu, High-quality temperature sensor based on the plasmonic resonant absorber. Plasmonics 14, 279 (2019).CrossRef
35.
Zurück zum Zitat Y.F. Zhang, and M. Cui, Refractive index sensor based on the symmetric MIM waveguide structure. J. Electron. Mater. 48, 1005 (2019).CrossRef Y.F. Zhang, and M. Cui, Refractive index sensor based on the symmetric MIM waveguide structure. J. Electron. Mater. 48, 1005 (2019).CrossRef
36.
Zurück zum Zitat Y. Khannal, and Y.K. Awasthi, Dual-band microwave sensor for investigation of liquid impurity concentration using a metamaterial complementary split-ring resonator. J. Electron. Mater. 49, 385 (2020).CrossRef Y. Khannal, and Y.K. Awasthi, Dual-band microwave sensor for investigation of liquid impurity concentration using a metamaterial complementary split-ring resonator. J. Electron. Mater. 49, 385 (2020).CrossRef
37.
Zurück zum Zitat M. Bazgir, M. Jalalpour, F.B.B. Zarrabi, and A.S. Arezoomand, J. Electr. Mater. 49, 2173 (2020).CrossRef M. Bazgir, M. Jalalpour, F.B.B. Zarrabi, and A.S. Arezoomand, J. Electr. Mater. 49, 2173 (2020).CrossRef
38.
Zurück zum Zitat F. Chen, H.F. Zhang, L.H. Sun, J.J. Li, and C.C. Yu, Temperature tunable fano resonance based on ring resonator side coupled with a MIM waveguide. Opt. Laser Technol. 116, 293 (2019).CrossRef F. Chen, H.F. Zhang, L.H. Sun, J.J. Li, and C.C. Yu, Temperature tunable fano resonance based on ring resonator side coupled with a MIM waveguide. Opt. Laser Technol. 116, 293 (2019).CrossRef
39.
Zurück zum Zitat M.A. Baqir, A. Farmani, T. Fatima, M.R. Raza, S.F. Shaukat, and A. Mir, Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 57, 1 (2018).CrossRef M.A. Baqir, A. Farmani, T. Fatima, M.R. Raza, S.F. Shaukat, and A. Mir, Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 57, 1 (2018).CrossRef
40.
Zurück zum Zitat A. Farmania, A. Mira, M. Bazgirb, and F.B. Zarrabi, Highly sensitive nano-scale plasmonic biosensor utilizing fano resonance metasurface in THz range: numerical study. Physica E 104, 233 (2018).CrossRef A. Farmania, A. Mira, M. Bazgirb, and F.B. Zarrabi, Highly sensitive nano-scale plasmonic biosensor utilizing fano resonance metasurface in THz range: numerical study. Physica E 104, 233 (2018).CrossRef
41.
Zurück zum Zitat M.R. Rakhshani, and M.A. Mansouri-Birjandi, High sensitivity plasmonic refractive index sensing and its application for human blood group identifification. Sens. Actuators B 249, 168 (2017).CrossRef M.R. Rakhshani, and M.A. Mansouri-Birjandi, High sensitivity plasmonic refractive index sensing and its application for human blood group identifification. Sens. Actuators B 249, 168 (2017).CrossRef
Metadaten
Titel
Dual-Mode Metamaterial Absorber for Independent Sweat and Temperature Sensing
verfasst von
Zhirong Li
Min Zhong
Liangyun Zang
Haiyan Ye
Publikationsdatum
11.04.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 6/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10388-9

Weitere Artikel der Ausgabe 6/2023

Journal of Electronic Materials 6/2023 Zur Ausgabe