skip to main content
research-article

Procedural voronoi foams for additive manufacturing

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

Microstructures at the scale of tens of microns change the physical properties of objects, making them lighter or more flexible. While traditionally difficult to produce, additive manufacturing now lets us physically realize such microstructures at low cost.

In this paper we propose to study procedural, aperiodic microstructures inspired by Voronoi open-cell foams. The absence of regularity affords for a simple approach to grade the foam geometry --- and thus its mechanical properties --- within a target object and its surface. Rather than requiring a global optimization process, the microstructures are directly generated to exhibit a specified elastic behavior. The implicit evaluation is akin to procedural textures in computer graphics, and locally adapts to follow the elasticity field. This allows very detailed structures to be generated in large objects without having to explicitly produce a full representation --- mesh or voxels --- of the complete object: the structures are added on the fly, just before each object slice is manufactured.

We study the elastic behavior of the microstructures and provide a complete description of the procedure generating them. We explain how to determine the geometric parameters of the microstructures from a target elasticity, and evaluate the result on printed samples. Finally, we apply our approach to the fabrication of objects with spatially varying elasticity, including the implicit modeling of a frame following the object surface and seamlessly connecting to the microstructures.

Skip Supplemental Material Section

Supplemental Material

a44.mp4

mp4

254.8 MB

References

  1. Allaire, G. 2012. Shape optimization by the homogenization method, vol. 146. Springer Science & Business Media.Google ScholarGoogle Scholar
  2. Andreassen, E., Lazarov, B. S., and Sigmund, O. 2014. Design of manufacturable 3D extremal elastic microstructure. Mechanics of Materials 69, 1, 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  3. Autodesk, 2016. www.autodesk.com/products/within.Google ScholarGoogle Scholar
  4. Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-it: Optimizing moment of inertia for spinnable objects. ACM Trans. Graph. 33, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4, 63:1--63:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Brackett, D., Ashcroft, I., Wildman, R., and Hague, R. 2014. An error diffusion based method to generate functionally graded cellular structures. Computers & Structures 138, 102--111.Google ScholarGoogle ScholarCross RefCross Ref
  7. Brennan-Craddock, J. 2011. The investigation of a method to generate conformal lattice structures for additive manufacturing. PhD thesis, Loughborough University.Google ScholarGoogle Scholar
  8. Cook, R. L. 1986. Stochastic Sampling in Computer Graphics. ACM Trans. Graph. 5, 1, 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fryazinov, O., Vilbrandt, T., and Pasko, A. A. 2013. Multi-scale space-variant FRep cellular structures. Computer-Aided Design 45, 1, 26--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gaitanaros, S., Kyriakides, S., and Kraynik, A. M. 2012. On the crushing response of random open-cell foams. Int. J. Solids Struct. 49, 19-20, 2733--2743.Google ScholarGoogle ScholarCross RefCross Ref
  11. Gibson, L. J., and Ashby, M. F. 1997. Cellular solids: structure and properties. Cambridge university press.Google ScholarGoogle Scholar
  12. Johnson, S. G., 2007. The NLopt nonlinear-optimization package.Google ScholarGoogle Scholar
  13. Lagae, A., Lefebvre, S., Drettakis, G., and Dutré, P. 2009. Procedural noise using sparse Gabor convolution. ACM Trans. Graph. 28, 3, 54:1--54:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lagae, A., Lefebvre, S., Cook, R., DeRose, T., Drettakis, G., Ebert, D., Lewis, J., Perlin, K., and Zwicker, M. 2010. A survey of procedural noise functions. Computer Graphics Forum 29, 8.Google ScholarGoogle ScholarCross RefCross Ref
  15. Li, D., Dai, N., Jiang, X., and Chen, X. 2015. Interior structural optimization based on the density-variable shape modeling of 3D printed objects. The International Journal of Advanced Manufacturing Technology 83, 9.Google ScholarGoogle Scholar
  16. Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., and Chen, B. 2014. Build-to-last: Strength to weight 3D printed objects. ACM Trans. Graph. 33, 4, 97:1--97:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Luxner, M. H., Stampfl, J., and Pettermann, H. E. 2007. Numerical simulations of 3D open cell structures -- influence of structural irregularities on elasto-plasticity and deformation localization. International Journal of Solids and Structures 44, 9, 2990--3003.Google ScholarGoogle ScholarCross RefCross Ref
  18. Medeiros e Sá, A., Mello, V. M., Echavarria, K. R., and Covill, D. 2015. Adaptive voids. The Visual Computer 31, 6-8, 799--808. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Panetta, J., Zhou, Q., Malomo, L., Pietroni, N., Cignoni, P., and Zorin, D. 2015. Elastic textures for additive fabrication. ACM Trans. Graph. 34, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Pasko, A., Fryazinov, O., Vilbrandt, T., Fayolle, P.-A., and Adzhiev, V. 2011. Procedural function-based modelling of volumetric microstructures. Graphical Models 73, 5, 165--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Pérez, J., Thomaszewski, B., Coros, S., Bickel, B., Canabal, J. A., Sumner, R., and Otaduy, M. A. 2015. Design and fabrication of flexible rod meshes. ACM Trans. Graph. 34, 4, 138:1--138:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: Balancing shapes for 3D fabrication. ACM Trans. Graph. 32, 4, 81:1--81:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Radman, A., Huang, X., and Xie, Y. 2013. Topology optimization of functionally graded cellular materials. Journal of Materials Science 48, 4, 1503--1510.Google ScholarGoogle ScholarCross RefCross Ref
  24. Roberts, A., and Garboczi, E. 2002. Elastic properties of model random three-dimensional open-cell solids. Journal of the Mechanics and Physics of Solids 50, 1, 33--55.Google ScholarGoogle ScholarCross RefCross Ref
  25. Schumacher, C., Bickel, B., Rys, J., Marschner, S., Daraio, C., and Gross, M. 2015. Microstructures to control elasticity in 3D printing. ACM Trans. Graph. 34, 4, 136:1--136:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sigmund, O., and Torquato, S. 1999. Design of smart composite materials using topology optimization. Smart Materials and Structures 8, 3, 365.Google ScholarGoogle ScholarCross RefCross Ref
  27. Sigmund, O. 1994. Materials with prescribed constitutive parameters: An inverse homogenization problem. Int. J. Solids Struct. 31, 17, 2313--2329.Google ScholarGoogle ScholarCross RefCross Ref
  28. Sigmund, O. 1995. Tailoring materials with prescribed elastic properties. Mechanics of Materials 20, 4, 351--368.Google ScholarGoogle ScholarCross RefCross Ref
  29. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Staten, M. L. 2007. Why is hex meshing so hard? Presentation at Sandia National Laboratories (URL).Google ScholarGoogle Scholar
  31. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM Trans. Graph. 31, 4, 48:1--48:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Umetani, N., and Schmidt, R. 2013. Cross-sectional structural analysis for 3D printing optimization. In SIGGRAPH Asia 2013 Technical Briefs, 5:1--5:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Van Der Burg, M. W. D., Shulmeister, V., Van Der Geissen, E., and Marissen, R. 1997. On the linear elastic properties of regular and random open-cell foam models. Journal of Cellular Plastics 33, 1, 31--54.Google ScholarGoogle ScholarCross RefCross Ref
  34. Vidimče, K., Wang, S.-P., Ragan-Kelley, J., and Matusik, W. 2013. OpenFab: A programmable pipeline for multi-material fabrication. ACM Trans. Graph. 32, 4, 136:1--136:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., and Liu, X. 2013. Cost-effective printing of 3D objects with skin-frame structures. ACM Trans. Graph. 32, 6, 177:1--177:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Worley, S. P. 1996. A cellular texturing basis function. In Proceedings of SIGGRAPH, 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Xia, L., and Breitkopf, P. 2015. Design of materials using topology optimization and energy-based homogenization approach in Matlab. Struct. Multidiscip. Opt. 52, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Xu, H., Li, Y., Chen, Y., and Barbič, J. 2015. Interactive material design using model reduction. ACM Trans. Graph. 34, 2, 18:1--18:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zhou, S., and Li, Q. 2008. Design of graded two-phase microstructures for tailored elasticity gradients. Journal of Materials Science 43, 15, 5157--5167.Google ScholarGoogle ScholarCross RefCross Ref
  40. Zhou, Q., Panetta, J., and Zorin, D. 2013. Worst-case structural analysis. ACM Trans. Graph. 32, 4, 137:1--137:12. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Procedural voronoi foams for additive manufacturing

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 35, Issue 4
      July 2016
      1396 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2897824
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 July 2016
      Published in tog Volume 35, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader