Skip to main content
Top

2020 | OriginalPaper | Chapter

6. 2D Roughness, 3D Roughness and Roughness Applications

Authors : Sujoy Kumar Saha, Hrishiraj Ranjan, Madhu Sruthi Emani, Anand Kumar Bharti

Published in: Insert Devices and Integral Roughness in Heat Transfer Enhancement

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The heat transfer and pressure drop characteristics of flow in channels with 2D roughness, 3D roughness and various roughness applications have been presented in this chapter. The thermo-hydraulic performance of various roughness elements such as corrugations, ribs, grooves and dimples has been discussed in detail.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Achenbach E (1977) The effect of surface roughness on the heat transfer from a circular cylinder to the cross flow of air. Int J Heat Mass Transf 20:359–369CrossRef Achenbach E (1977) The effect of surface roughness on the heat transfer from a circular cylinder to the cross flow of air. Int J Heat Mass Transf 20:359–369CrossRef
go back to reference Aharwal KR, Gandhi BK, Saini JS (2008) Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renew Energy 33:585–596CrossRef Aharwal KR, Gandhi BK, Saini JS (2008) Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renew Energy 33:585–596CrossRef
go back to reference Ahmed HE, Ahmed MI, Yusoff MZ, Hawlader MNA, Al-Ani H (2015) Experimental study of heat transfer augmentation in non-circular duct using combined Nanofluids and vortex generator. Int J Heat Mass Transf 90:1197–1206CrossRef Ahmed HE, Ahmed MI, Yusoff MZ, Hawlader MNA, Al-Ani H (2015) Experimental study of heat transfer augmentation in non-circular duct using combined Nanofluids and vortex generator. Int J Heat Mass Transf 90:1197–1206CrossRef
go back to reference Almeida IA, Souza-Mendes PR (1992) Local and average transport coefficients for the turbulent flow in internally ribbed tubes. Exp Therm Fluid Sci 5:513–523CrossRef Almeida IA, Souza-Mendes PR (1992) Local and average transport coefficients for the turbulent flow in internally ribbed tubes. Exp Therm Fluid Sci 5:513–523CrossRef
go back to reference Al-Qahtani M, Chen HC, Han JC, Jang YJ (2002) Prediction of flow and heat transfer in rotating two-pass rectangular channels with 45◦ rib turbulators. ASME J Turbomach 124(2):242–250CrossRef Al-Qahtani M, Chen HC, Han JC, Jang YJ (2002) Prediction of flow and heat transfer in rotating two-pass rectangular channels with 45◦ rib turbulators. ASME J Turbomach 124(2):242–250CrossRef
go back to reference Alipour H, Karimipour A, Safaei MR, Semiromi DT, Akbari OA (2017) Influence of t-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Phys E Low Dimen Syst Nanostruct 88:60–76CrossRef Alipour H, Karimipour A, Safaei MR, Semiromi DT, Akbari OA (2017) Influence of t-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Phys E Low Dimen Syst Nanostruct 88:60–76CrossRef
go back to reference Barba A, Rainieri S, Spiga M (2002) Heat transfer enhancement in a corrugated tube. Int Commun Heat Mass Transf 29(3):313–322CrossRef Barba A, Rainieri S, Spiga M (2002) Heat transfer enhancement in a corrugated tube. Int Commun Heat Mass Transf 29(3):313–322CrossRef
go back to reference Burgess NK, Oliveira MM, Ligrani PM (2003) Nusselt number behavior on deep dimpled surfaces within a channel. J Heat Transf 125:11–18CrossRef Burgess NK, Oliveira MM, Ligrani PM (2003) Nusselt number behavior on deep dimpled surfaces within a channel. J Heat Transf 125:11–18CrossRef
go back to reference Bhagoria JL, Saini JS, Solanki SC (2002) Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate. Renew Energy 25:341–369CrossRef Bhagoria JL, Saini JS, Solanki SC (2002) Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate. Renew Energy 25:341–369CrossRef
go back to reference Bhushan B, Singh R (2011) Nusselt number and friction factor correlations for solar air heater duct having artificially roughened absorber plate. Sol Energy 85:1109–1118CrossRef Bhushan B, Singh R (2011) Nusselt number and friction factor correlations for solar air heater duct having artificially roughened absorber plate. Sol Energy 85:1109–1118CrossRef
go back to reference Bianco V, Scarpa F, Tagliafico LA (2018) Computational fluid dynamics modeling of developing forced laminar convection flow of Al2O3–water Nanofluid in a two-dimensional rectangular section channel. J Enhanc Heat Transf 25(4–5):387–398CrossRef Bianco V, Scarpa F, Tagliafico LA (2018) Computational fluid dynamics modeling of developing forced laminar convection flow of Al2O3–water Nanofluid in a two-dimensional rectangular section channel. J Enhanc Heat Transf 25(4–5):387–398CrossRef
go back to reference Bopche SB, Tandale MS (2009) Experimental investigations on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct. Int J Heat Mass Transf 52:2834–2848CrossRef Bopche SB, Tandale MS (2009) Experimental investigations on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct. Int J Heat Mass Transf 52:2834–2848CrossRef
go back to reference Cernecky J, Koniar J, Ohanka L, Brodnianska Z (2015) Temperature field and heat transfer in low REYNOLDS flows inside trapezoidal-profiled corrugated-plate channels. J Enhanc Heat Transf 22(4):329–343CrossRef Cernecky J, Koniar J, Ohanka L, Brodnianska Z (2015) Temperature field and heat transfer in low REYNOLDS flows inside trapezoidal-profiled corrugated-plate channels. J Enhanc Heat Transf 22(4):329–343CrossRef
go back to reference Chandra PR, Alexander CR, Han JC (2003) Heat transfer and friction behaviors in rectangular channels with varying number of ribbed walls. Int J Heat Mass Transf 46:481–495CrossRef Chandra PR, Alexander CR, Han JC (2003) Heat transfer and friction behaviors in rectangular channels with varying number of ribbed walls. Int J Heat Mass Transf 46:481–495CrossRef
go back to reference Chen W, Ren J, Jiang H (2011) Effect of turning vane configurations on heat transfer and pressure drop in a ribbed internal cooling system. ASMEJ Turbomach 133(4):041012CrossRef Chen W, Ren J, Jiang H (2011) Effect of turning vane configurations on heat transfer and pressure drop in a ribbed internal cooling system. ASMEJ Turbomach 133(4):041012CrossRef
go back to reference Chen Y, Chew Y, Khoo B (2014) Heat transfer and flow structure on periodically dimple protrusion patterned walls in turbulent channel flow. Int J Heat Mass Transf 78:871–882CrossRef Chen Y, Chew Y, Khoo B (2014) Heat transfer and flow structure on periodically dimple protrusion patterned walls in turbulent channel flow. Int J Heat Mass Transf 78:871–882CrossRef
go back to reference Churchill SW (1973) Empirical expressions for the shear stress in turbulent flow in commercial pipe. AiChE J 19:375–376CrossRef Churchill SW (1973) Empirical expressions for the shear stress in turbulent flow in commercial pipe. AiChE J 19:375–376CrossRef
go back to reference Chyu MK, Yu Y, Ding H, Downs JP, Soechting FO (1997) Concavity enhanced heat transfer in an internal cooling passage, ASME Paper 97-GT-437. ASME, New York Chyu MK, Yu Y, Ding H, Downs JP, Soechting FO (1997) Concavity enhanced heat transfer in an internal cooling passage, ASME Paper 97-GT-437. ASME, New York
go back to reference Chyu MK, Siw SC (2013) Recent advances of internal cooling techniques for gas turbine air foils. ASME J Therm Sci Eng Appl 5(021008):1–12 Chyu MK, Siw SC (2013) Recent advances of internal cooling techniques for gas turbine air foils. ASME J Therm Sci Eng Appl 5(021008):1–12
go back to reference Cimina S, Wang C, Wang L, Niro A, Sunden B (2015) Experimental study of pressure drop and heat transfer in a u-bend channel with various guide vanes and ribs. J Enhanc Heat Transf 22(1):29–45CrossRef Cimina S, Wang C, Wang L, Niro A, Sunden B (2015) Experimental study of pressure drop and heat transfer in a u-bend channel with various guide vanes and ribs. J Enhanc Heat Transf 22(1):29–45CrossRef
go back to reference Coletti F, Verstraete T, Bulle J, Van derWielen T, Van den Berge N, Arts T (2013) Optimization of a U-bend for minimal pressure loss in internal cooling channels—part II: experimental validation. ASMEJ Turbomach 135(5):051016CrossRef Coletti F, Verstraete T, Bulle J, Van derWielen T, Van den Berge N, Arts T (2013) Optimization of a U-bend for minimal pressure loss in internal cooling channels—part II: experimental validation. ASMEJ Turbomach 135(5):051016CrossRef
go back to reference Cope WG (1945) The friction and heat transmission coefficients of rough pipes. Proc Inst Mech Eng 145:99–105CrossRef Cope WG (1945) The friction and heat transmission coefficients of rough pipes. Proc Inst Mech Eng 145:99–105CrossRef
go back to reference Dong Y, Huixiong L, Tingkuan C (2001) Pressure drop, heat transfer and performance of singlephase turbulent flow in spirally corrugated tubes. Exp Therm Fluid Sci 24:131–138CrossRef Dong Y, Huixiong L, Tingkuan C (2001) Pressure drop, heat transfer and performance of singlephase turbulent flow in spirally corrugated tubes. Exp Therm Fluid Sci 24:131–138CrossRef
go back to reference Edwards FJ, Sheriff N (1961) The heat transfer and friction characteristics of forced convection air flow over a particular type of rough surface. In: International developments in heat transfer. ASME, New York, pp 415–426 Edwards FJ, Sheriff N (1961) The heat transfer and friction characteristics of forced convection air flow over a particular type of rough surface. In: International developments in heat transfer. ASME, New York, pp 415–426
go back to reference Eiamsa-ard S, Promvonge P (2008) Numerical study on heat transfer of turbulent channel flow over periodic grooves. Int Commun Heat Mass Transf 35(7):844–852CrossRef Eiamsa-ard S, Promvonge P (2008) Numerical study on heat transfer of turbulent channel flow over periodic grooves. Int Commun Heat Mass Transf 35(7):844–852CrossRef
go back to reference Eiamsa-ard S, Promvonge P (2009) Thermal characteristics of turbulent rib-grooved channel flows. Int Commun Heat Mass Transf 36(7):705–711CrossRef Eiamsa-ard S, Promvonge P (2009) Thermal characteristics of turbulent rib-grooved channel flows. Int Commun Heat Mass Transf 36(7):705–711CrossRef
go back to reference Ekkad SV, Han JC (1997) Detailed heat transfer distributions in two-pass square channels with rib turbulators. Int J Heat Mass Transf 40:2525–2537CrossRef Ekkad SV, Han JC (1997) Detailed heat transfer distributions in two-pass square channels with rib turbulators. Int J Heat Mass Transf 40:2525–2537CrossRef
go back to reference Ekkad SV, Huang Y, Han JC (1998) Detailed heat transfer distributions in two-pass smooth and turbulated square channels with bleed holes. Int J Heat Mass Transf 41:3781–3791CrossRef Ekkad SV, Huang Y, Han JC (1998) Detailed heat transfer distributions in two-pass smooth and turbulated square channels with bleed holes. Int J Heat Mass Transf 41:3781–3791CrossRef
go back to reference Elshafei EAM, Awad MM, El-Negiry E, Ali AG (2010) Heat transfer and pressure drop in corrugated channels. Energy 35(1):101–110CrossRef Elshafei EAM, Awad MM, El-Negiry E, Ali AG (2010) Heat transfer and pressure drop in corrugated channels. Energy 35(1):101–110CrossRef
go back to reference Fenner GW, Ragi E (1979) Enhanced tube inner surface heat transfer device and method. U.S. patent 4,154,291, May 15 Fenner GW, Ragi E (1979) Enhanced tube inner surface heat transfer device and method. U.S. patent 4,154,291, May 15
go back to reference Gee DL, Webb RL (1980) Forced convection heat transfer in helically rib-roughened tubes. Int J Heat Mass Transf 23:1127–1136CrossRef Gee DL, Webb RL (1980) Forced convection heat transfer in helically rib-roughened tubes. Int J Heat Mass Transf 23:1127–1136CrossRef
go back to reference Gowen RA, Smith JW (1968) Turbulent heat transfer from smooth and rough surfaces. Int J Heat Mass Transf 11:1657–1673CrossRef Gowen RA, Smith JW (1968) Turbulent heat transfer from smooth and rough surfaces. Int J Heat Mass Transf 11:1657–1673CrossRef
go back to reference Groehn HG, Scholz F (1976) Heat transfer and pressure drop of in-line tube banks with artificial roughness. In: Heat and mass transfer sourcebook: fifth all-union conference, Minsk, Scripta, Washington, DC, pp 21–24 Groehn HG, Scholz F (1976) Heat transfer and pressure drop of in-line tube banks with artificial roughness. In: Heat and mass transfer sourcebook: fifth all-union conference, Minsk, Scripta, Washington, DC, pp 21–24
go back to reference Guo L, Xu H, Gong L (2015) Influence of wall roughness models on fluid flow and heat transfer in microchannels. Appl Therm Eng 84:399–408CrossRef Guo L, Xu H, Gong L (2015) Influence of wall roughness models on fluid flow and heat transfer in microchannels. Appl Therm Eng 84:399–408CrossRef
go back to reference Gupta D, Solanki SC, Saini JS (1993) Heat and fluid flow in rectangular solar air heater ducts having transverse rib roughness on absorber plates. Sol Energy 51(1):31–37CrossRef Gupta D, Solanki SC, Saini JS (1993) Heat and fluid flow in rectangular solar air heater ducts having transverse rib roughness on absorber plates. Sol Energy 51(1):31–37CrossRef
go back to reference Gupta D, Solanki SC, Saini JS (1997) Thermohydraulic performance of solar air heaters with roughened absorber plates. Sol Energy 61:33–42CrossRef Gupta D, Solanki SC, Saini JS (1997) Thermohydraulic performance of solar air heaters with roughened absorber plates. Sol Energy 61:33–42CrossRef
go back to reference Gupta S, Chaube A, Verma P (2012) Review on heat transfer augmentation techniques: application in gas turbine blade internal cooling. J Eng Sci Technol Rev 5:57–62CrossRef Gupta S, Chaube A, Verma P (2012) Review on heat transfer augmentation techniques: application in gas turbine blade internal cooling. J Eng Sci Technol Rev 5:57–62CrossRef
go back to reference Han JC (1984) Heat transfer and friction in channels with two opposite rib-roughened walls. J Heat Transf 106:774–781CrossRef Han JC (1984) Heat transfer and friction in channels with two opposite rib-roughened walls. J Heat Transf 106:774–781CrossRef
go back to reference Han JC (1988) Heat transfer and friction characteristics in rectangular channels with rib turbulators. J Heat Transf 110:321–328CrossRef Han JC (1988) Heat transfer and friction characteristics in rectangular channels with rib turbulators. J Heat Transf 110:321–328CrossRef
go back to reference Han JC, Zhang YM (1992) High performance heat transfer ducts with parallel broken and V-shaped broken ribs. Int J Heat Mass Transf 35:513–523CrossRef Han JC, Zhang YM (1992) High performance heat transfer ducts with parallel broken and V-shaped broken ribs. Int J Heat Mass Transf 35:513–523CrossRef
go back to reference Han JC, Ou S, Park JS, Lei CK (1989) Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators. Int J Heat Mass Transf 32:1619–1630CrossRef Han JC, Ou S, Park JS, Lei CK (1989) Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators. Int J Heat Mass Transf 32:1619–1630CrossRef
go back to reference Han JC, Zhang YM, Lee CP (1991) Augmented heat transfer in square channels with parallel, crossed, and V-shaped angled ribs. J Heat Transf 113:590–596CrossRef Han JC, Zhang YM, Lee CP (1991) Augmented heat transfer in square channels with parallel, crossed, and V-shaped angled ribs. J Heat Transf 113:590–596CrossRef
go back to reference Han JC, Huang JJ, Lee CP (1993) Augmented heat transfer in square channels with wedge shaped and delta-shaped turbulence promoters. J Enhanc Heat Transf 1:37–52CrossRef Han JC, Huang JJ, Lee CP (1993) Augmented heat transfer in square channels with wedge shaped and delta-shaped turbulence promoters. J Enhanc Heat Transf 1:37–52CrossRef
go back to reference Han JC, Huh M (2010) Recent studies in turbine blade internal cooling. Heat Transf Res 41:803–828CrossRef Han JC, Huh M (2010) Recent studies in turbine blade internal cooling. Heat Transf Res 41:803–828CrossRef
go back to reference Han J, Glicksman L, Rohsenow W (1978) An investigation of heat transfer and friction for rib-roughened surfaces. Int J Heat Mass Transf 21(8):1143–1156CrossRef Han J, Glicksman L, Rohsenow W (1978) An investigation of heat transfer and friction for rib-roughened surfaces. Int J Heat Mass Transf 21(8):1143–1156CrossRef
go back to reference Han JC, Dutta S, Ekkad S (2000) Gas turbine heat transfer and cooling technology. Taylor & Francis, New York Han JC, Dutta S, Ekkad S (2000) Gas turbine heat transfer and cooling technology. Taylor & Francis, New York
go back to reference Hans VS, Saini RP, Saini JS (2010) Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple V-ribs. Sol Energy 84:898–911CrossRef Hans VS, Saini RP, Saini JS (2010) Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple V-ribs. Sol Energy 84:898–911CrossRef
go back to reference Herman C, Kang E (2001) Comparative evaluation of three heat transfer enhancement strategies in a grooved channel. Heat Mass Transf 37(6):563–575CrossRef Herman C, Kang E (2001) Comparative evaluation of three heat transfer enhancement strategies in a grooved channel. Heat Mass Transf 37(6):563–575CrossRef
go back to reference Herman C, Kang E (2002) Heat transfer enhancement in a grooved channel with curved vanes. Int J Heat Mass Transf 45(18):3741–3757CrossRef Herman C, Kang E (2002) Heat transfer enhancement in a grooved channel with curved vanes. Int J Heat Mass Transf 45(18):3741–3757CrossRef
go back to reference Hijikata K, Ishiguro H, Mori Y (1987) Heat transfer augmentation in a pipe flow with smooth cascade turbulence promoters and its application to energy conversion. In: Yang WJ, Mori Y (eds) Heat transfer in high technology and power engineering. Hemisphere, New York, pp 368–397 Hijikata K, Ishiguro H, Mori Y (1987) Heat transfer augmentation in a pipe flow with smooth cascade turbulence promoters and its application to energy conversion. In: Yang WJ, Mori Y (eds) Heat transfer in high technology and power engineering. Hemisphere, New York, pp 368–397
go back to reference Hishida M, Takase K (1987) Heat transfer coefficient of the ribbed surface. In: Proceedings of the third ASME/SME joint thermal engineering conference, vol 3, pp 103–110 Hishida M, Takase K (1987) Heat transfer coefficient of the ribbed surface. In: Proceedings of the third ASME/SME joint thermal engineering conference, vol 3, pp 103–110
go back to reference Huang K, Wan J, Chen C, Mao D, Li Y (2013) Experiments investigation of the effects of surface roughness on laminar flow in macro tubes. Exp Thermal Fluid Sci 45:243–248CrossRef Huang K, Wan J, Chen C, Mao D, Li Y (2013) Experiments investigation of the effects of surface roughness on laminar flow in macro tubes. Exp Thermal Fluid Sci 45:243–248CrossRef
go back to reference Hudina M (1979) Evaluation of heat transfer performances of rough surfaces from experimental investigation in annular channels. Int J Heat Mass Transf 22:1381–1392CrossRef Hudina M (1979) Evaluation of heat transfer performances of rough surfaces from experimental investigation in annular channels. Int J Heat Mass Transf 22:1381–1392CrossRef
go back to reference Hwang J-J (1998) Heat transfer-friction characteristic comparison in rectangular ducts with slit and solid ribs mounted on one wall. J Heat Transf 120:709–716CrossRef Hwang J-J (1998) Heat transfer-friction characteristic comparison in rectangular ducts with slit and solid ribs mounted on one wall. J Heat Transf 120:709–716CrossRef
go back to reference Hwang J-J, Liou T-M (1994) Augmented heat transfer in a rectangular channel with permeable ribs mounted on the wall. J Heat Transf 116:912–920CrossRef Hwang J-J, Liou T-M (1994) Augmented heat transfer in a rectangular channel with permeable ribs mounted on the wall. J Heat Transf 116:912–920CrossRef
go back to reference Hwang J-J, Liou T-M (1995) Heat transfer and friction in a low-aspect-ratio rectangular channel with staggered perforated ribs on two opposite walls. J Heat Transf 117:843–850CrossRef Hwang J-J, Liou T-M (1995) Heat transfer and friction in a low-aspect-ratio rectangular channel with staggered perforated ribs on two opposite walls. J Heat Transf 117:843–850CrossRef
go back to reference Jaurker AR, Saini JS, Gandhi BK (2006) Heat transfer and friction characteristics of rectangular solar air heater duct using rib-grooved artificial roughness. Sol Energy 80:895–897CrossRef Jaurker AR, Saini JS, Gandhi BK (2006) Heat transfer and friction characteristics of rectangular solar air heater duct using rib-grooved artificial roughness. Sol Energy 80:895–897CrossRef
go back to reference Jia R, Sunden B, Faghri M (2005) Computational analysis of heat transfer enhancement in square ducts with v-shaped ribs: turbine blade cooling. ASME J Heat Transf 127(4):425–433CrossRef Jia R, Sunden B, Faghri M (2005) Computational analysis of heat transfer enhancement in square ducts with v-shaped ribs: turbine blade cooling. ASME J Heat Transf 127(4):425–433CrossRef
go back to reference Kamali R, Binesh AR (2008) The importance of rib shape effects on the local heat transfer and flow friction characteristics of square ducts with ribbed internal surfaces. Int Commun Heat Mass Transf 35(8):1032–1040CrossRef Kamali R, Binesh AR (2008) The importance of rib shape effects on the local heat transfer and flow friction characteristics of square ducts with ribbed internal surfaces. Int Commun Heat Mass Transf 35(8):1032–1040CrossRef
go back to reference Kang M-G (2001) Diameter effects on nucleate pool boiling for a vertical tube. J Heat Transf 123:400–404CrossRef Kang M-G (2001) Diameter effects on nucleate pool boiling for a vertical tube. J Heat Transf 123:400–404CrossRef
go back to reference Kanoun M, Baccar M, Mseddi M (2011) Computational analysis of flow and heat transfer in passages with attached and detached rib arrays. J Enhanc Heat Transf 18(2):167–176CrossRef Kanoun M, Baccar M, Mseddi M (2011) Computational analysis of flow and heat transfer in passages with attached and detached rib arrays. J Enhanc Heat Transf 18(2):167–176CrossRef
go back to reference Karmare SV, Tikekar AN (2007) Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs. Int J Heat Mass Transf 50:4342–4351MATHCrossRef Karmare SV, Tikekar AN (2007) Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs. Int J Heat Mass Transf 50:4342–4351MATHCrossRef
go back to reference Karwa R, Solanki SC, Saini JS (1999) Heat transfer coefficient and friction factor correlations for the transitional flow regime in rib-roughened rectangular ducts. Int J Heat Mass Transf 42:1597–1615CrossRef Karwa R, Solanki SC, Saini JS (1999) Heat transfer coefficient and friction factor correlations for the transitional flow regime in rib-roughened rectangular ducts. Int J Heat Mass Transf 42:1597–1615CrossRef
go back to reference Karwa R (2003) Experimental studies of augmented heat transfer and friction in asymmetrically heated rectangular ducts with ribs on the heated wall in transverse inclined, V-continuous and V-discrete pattern. Int Commun Heat Mass Transf 30(2):241–250CrossRef Karwa R (2003) Experimental studies of augmented heat transfer and friction in asymmetrically heated rectangular ducts with ribs on the heated wall in transverse inclined, V-continuous and V-discrete pattern. Int Commun Heat Mass Transf 30(2):241–250CrossRef
go back to reference Khalid A, Xie G, Sunden B (2016) Numerical simulations of flow structure and turbulent heat transfer in a square ribbed channel with varying rib pitch ratio. J Enhanc Heat Transf 23(2):155–174CrossRef Khalid A, Xie G, Sunden B (2016) Numerical simulations of flow structure and turbulent heat transfer in a square ribbed channel with varying rib pitch ratio. J Enhanc Heat Transf 23(2):155–174CrossRef
go back to reference Kim NH (2015) Single-phase pressure drop and heat transfer measurements of turbulent flow inside helically dimpled tubes. J Enhanc Heat Transf 22(4):345–363CrossRef Kim NH (2015) Single-phase pressure drop and heat transfer measurements of turbulent flow inside helically dimpled tubes. J Enhanc Heat Transf 22(4):345–363CrossRef
go back to reference Kong YQ, Yang LJ, Du XZ, Yang YP (2016) Air-side flow and heat transfer characteristics of flat and slotted finned tube bundles with various tube pitches. Int J Heat Mass Transf 99:357–371CrossRef Kong YQ, Yang LJ, Du XZ, Yang YP (2016) Air-side flow and heat transfer characteristics of flat and slotted finned tube bundles with various tube pitches. Int J Heat Mass Transf 99:357–371CrossRef
go back to reference Kukreja RT, Lau SC, McMillan RD (1993) Local heat/mass transfer distribution in a square channel with full and V-shaped ribs. Int J Heat Mass Transf 36:2013–2020CrossRef Kukreja RT, Lau SC, McMillan RD (1993) Local heat/mass transfer distribution in a square channel with full and V-shaped ribs. Int J Heat Mass Transf 36:2013–2020CrossRef
go back to reference Kumar A, Bhagoria JL, Sarviya RM (2008) Heat transfer enhancement in channel of solar air collector by using discrete W-shaped artificial roughened absorber. In: Proc. 19th national and 8th ISHMT-ASME heat and mass transfer conference Kumar A, Bhagoria JL, Sarviya RM (2008) Heat transfer enhancement in channel of solar air collector by using discrete W-shaped artificial roughened absorber. In: Proc. 19th national and 8th ISHMT-ASME heat and mass transfer conference
go back to reference Kumar A, Saini RP, Saini JS (2013) Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having multi V-shaped with gap rib as artificial roughness. Renew Energy 58:151–163CrossRef Kumar A, Saini RP, Saini JS (2013) Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having multi V-shaped with gap rib as artificial roughness. Renew Energy 58:151–163CrossRef
go back to reference Kumar A, Saini RP, Saini JS (2014) A review of thermohydraulic performance of artificially roughened solar air heaters. Renew Sust Energ Rev 37:100–122CrossRef Kumar A, Saini RP, Saini JS (2014) A review of thermohydraulic performance of artificially roughened solar air heaters. Renew Sust Energ Rev 37:100–122CrossRef
go back to reference Kumar R, Judd RL (1970) Heat transfer with coiled wire turbulence promoters. Can J Chem Eng 48:378–383CrossRef Kumar R, Judd RL (1970) Heat transfer with coiled wire turbulence promoters. Can J Chem Eng 48:378–383CrossRef
go back to reference Kumar S, Kothiyal AD, Bisht MS, Kumar A (2019) Effect of nanofluid flow and protrusion ribs on performance in square channels: an experimental investigation. J Enhanc Heat Transf 26(1):75–100CrossRef Kumar S, Kothiyal AD, Bisht MS, Kumar A (2019) Effect of nanofluid flow and protrusion ribs on performance in square channels: an experimental investigation. J Enhanc Heat Transf 26(1):75–100CrossRef
go back to reference Kumbhar DG, Sane NK (2015) Exploring heat transfer and friction factor performance of a dimpled tube equipped with regularly spaced twisted tape inserts. Procedia Eng 127:1142–1149CrossRef Kumbhar DG, Sane NK (2015) Exploring heat transfer and friction factor performance of a dimpled tube equipped with regularly spaced twisted tape inserts. Procedia Eng 127:1142–1149CrossRef
go back to reference Kuwahara H, Takahashi K, Yanagida T, Nakayama W, Hzgimoto S, Oizumi K (1989) Method of producing a heat transfer tube for single-phase flow. U.S. patent 4,794,775, January 3 Kuwahara H, Takahashi K, Yanagida T, Nakayama W, Hzgimoto S, Oizumi K (1989) Method of producing a heat transfer tube for single-phase flow. U.S. patent 4,794,775, January 3
go back to reference Lanjewar A, Bhagoria JL, Sarviya RM (2011) Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-rib roughness. Exp Thermal Fluid Sci 35:986–995CrossRef Lanjewar A, Bhagoria JL, Sarviya RM (2011) Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-rib roughness. Exp Thermal Fluid Sci 35:986–995CrossRef
go back to reference Layek A, Saini JS, Solanki SC (2006) Second law optimization of a solar air heater having chamfered rib-groove roughness on absorber plate. Renew Energy 32:1967–1980CrossRef Layek A, Saini JS, Solanki SC (2006) Second law optimization of a solar air heater having chamfered rib-groove roughness on absorber plate. Renew Energy 32:1967–1980CrossRef
go back to reference Lee CK, Abdel-Moneim SA (2001) Computational analysis of heat transfer in turbulent flow past a horizontal surface with 2-D ribs. Int Commun Heat Mass Transf 28(2):161–170CrossRef Lee CK, Abdel-Moneim SA (2001) Computational analysis of heat transfer in turbulent flow past a horizontal surface with 2-D ribs. Int Commun Heat Mass Transf 28(2):161–170CrossRef
go back to reference Lee YO, Ahn J, Lee JS (2008) Effects of dimple depth and Reynolds number on the turbulent heat transfer in a dimpled channel. Prog Comput Fluid Dyn 8:432–438MATHCrossRef Lee YO, Ahn J, Lee JS (2008) Effects of dimple depth and Reynolds number on the turbulent heat transfer in a dimpled channel. Prog Comput Fluid Dyn 8:432–438MATHCrossRef
go back to reference Lee YO, Ahn J, Kim J, Lee JS (2012) Effect of dimple arrangements on the turbulent heat transfer in a dimpled channel. J Enhanc Heat Transf 19(4):359–367CrossRef Lee YO, Ahn J, Kim J, Lee JS (2012) Effect of dimple arrangements on the turbulent heat transfer in a dimpled channel. J Enhanc Heat Transf 19(4):359–367CrossRef
go back to reference Lewis MJ (1974) Roughness functions, the thermohydraulic performance of rough surfaces and the Hall transformation—an overview. Int J Heat Mass Transf 17:809–814CrossRef Lewis MJ (1974) Roughness functions, the thermohydraulic performance of rough surfaces and the Hall transformation—an overview. Int J Heat Mass Transf 17:809–814CrossRef
go back to reference Li S, Xie G, Zhang W, Sunden B (2012) Numerical predictions of pressure drop and heat transfer in a blade internal cooling passage with continuous truncated ribs. Heat Transf Res 43:573–590CrossRef Li S, Xie G, Zhang W, Sunden B (2012) Numerical predictions of pressure drop and heat transfer in a blade internal cooling passage with continuous truncated ribs. Heat Transf Res 43:573–590CrossRef
go back to reference Liou TM, Hwang JJ (1993) Effect of ridge shapes on turbulent heat transfer and friction in a rectangular channel. Int J Heat Mass Transf 36:931–940CrossRef Liou TM, Hwang JJ (1993) Effect of ridge shapes on turbulent heat transfer and friction in a rectangular channel. Int J Heat Mass Transf 36:931–940CrossRef
go back to reference Liou T-M, Hwang J-J, Chen S-H (1993) Simulation and measurement of enhanced turbulent heat transfer in a channel with periodic ribs on one principal wall. Int J Heat Mass Transf 36:507–517CrossRef Liou T-M, Hwang J-J, Chen S-H (1993) Simulation and measurement of enhanced turbulent heat transfer in a channel with periodic ribs on one principal wall. Int J Heat Mass Transf 36:507–517CrossRef
go back to reference Ligrani PM, Oliveira MM, Blaskovich T (2003) Comparison of heat transfer augmentation techniques. AIAA J 41(3):337–362CrossRef Ligrani PM, Oliveira MM, Blaskovich T (2003) Comparison of heat transfer augmentation techniques. AIAA J 41(3):337–362CrossRef
go back to reference Ligrani PM, Mahmood GI, Harrison JL, Clayton CM, Nelson DL (2001) Flow structure and local Nusselt number variations in a channel with dimples and protrusions on opposite walls. Int J Heat Mass Transf 44:4413–4425CrossRef Ligrani PM, Mahmood GI, Harrison JL, Clayton CM, Nelson DL (2001) Flow structure and local Nusselt number variations in a channel with dimples and protrusions on opposite walls. Int J Heat Mass Transf 44:4413–4425CrossRef
go back to reference Liu J, Song Y, Xie G, Sunden B (2015) Numerical modeling flow and heat transfer in dimpled cooling channels with secondary hemispherical protrusions. Energy 79:1–19CrossRef Liu J, Song Y, Xie G, Sunden B (2015) Numerical modeling flow and heat transfer in dimpled cooling channels with secondary hemispherical protrusions. Energy 79:1–19CrossRef
go back to reference Luo J, Razinsky EH (2009) Analysis of turbulent flow in 180 deg turning ducts with and without guide vanes. ASME J Turbomach 131(2):021011CrossRef Luo J, Razinsky EH (2009) Analysis of turbulent flow in 180 deg turning ducts with and without guide vanes. ASME J Turbomach 131(2):021011CrossRef
go back to reference Mahmood GI, Ligrani PM (2002) Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure. Int J Heat Mass Transf 45:2011–2020CrossRef Mahmood GI, Ligrani PM (2002) Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure. Int J Heat Mass Transf 45:2011–2020CrossRef
go back to reference Mahmood GI, Hill ML, Nelson DL, Ligrani PM, Moon HK, Glezer B (2001a) Local heat transfer and flow structure on and above a dimpled surface in a channel. J Turbomachinery 123:115–123CrossRef Mahmood GI, Hill ML, Nelson DL, Ligrani PM, Moon HK, Glezer B (2001a) Local heat transfer and flow structure on and above a dimpled surface in a channel. J Turbomachinery 123:115–123CrossRef
go back to reference Mahmood GI, Sabbagh MZ, Ligrani PM (2001b) Heat transfer in a channel with dimples and protrusions on opposite walls. J Thennophys Heat Transf 15:275–283CrossRef Mahmood GI, Sabbagh MZ, Ligrani PM (2001b) Heat transfer in a channel with dimples and protrusions on opposite walls. J Thennophys Heat Transf 15:275–283CrossRef
go back to reference Maubach K (1972) Rough annulus pressure drop—interpretation of experiments and recalculation for square ribs. Int J Heat Mass Transf 15:2489–2498CrossRef Maubach K (1972) Rough annulus pressure drop—interpretation of experiments and recalculation for square ribs. Int J Heat Mass Transf 15:2489–2498CrossRef
go back to reference McLain CD (1975) Process for preparing heat exchanger tube. U.S. patent 1,906,605, issued to Olin Corp McLain CD (1975) Process for preparing heat exchanger tube. U.S. patent 1,906,605, issued to Olin Corp
go back to reference Mehta MH, Raja Rao M (1979) Heat transfer and friction characteristics of spirally enhanced tubes for horizontal condensers. In: Chenoweth JM, et al (eds) Advances in enhanced heat transfer, ASME Symp. ASME, New York, pp 11–22 Mehta MH, Raja Rao M (1979) Heat transfer and friction characteristics of spirally enhanced tubes for horizontal condensers. In: Chenoweth JM, et al (eds) Advances in enhanced heat transfer, ASME Symp. ASME, New York, pp 11–22
go back to reference Mehta MH, Raja Rao M (1988) Analysis mid correlation of turbulent flow heat transfer and friction coefficients in spirally corrugated tubes for steam condenser application. In: Proceedings of the 1988 national heat transfer for conference, HTD-96, vol 3, pp 307–312 Mehta MH, Raja Rao M (1988) Analysis mid correlation of turbulent flow heat transfer and friction coefficients in spirally corrugated tubes for steam condenser application. In: Proceedings of the 1988 national heat transfer for conference, HTD-96, vol 3, pp 307–312
go back to reference Meyer L (1980) Turbulent flow in a plane channel having one or two rough walls. Int J Heat Mass Transf 23:591–608CrossRef Meyer L (1980) Turbulent flow in a plane channel having one or two rough walls. Int J Heat Mass Transf 23:591–608CrossRef
go back to reference Mittal MK, Varun, Saini RP, Singal SK (2007) Effective efficiency of solar air heaters having different types of roughness elements on absorber plate. Energy 32:739–745CrossRef Mittal MK, Varun, Saini RP, Singal SK (2007) Effective efficiency of solar air heaters having different types of roughness elements on absorber plate. Energy 32:739–745CrossRef
go back to reference Momin AME, Saini JS, Solanki SC (2002) Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. Int J Heat Mass Transf 45:3383–3396CrossRef Momin AME, Saini JS, Solanki SC (2002) Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. Int J Heat Mass Transf 45:3383–3396CrossRef
go back to reference Muluwork KB (2000) Investigations on fluid flow and heat transfer in roughened absorber solar heaters. Ph.D. dissertation, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand India Muluwork KB (2000) Investigations on fluid flow and heat transfer in roughened absorber solar heaters. Ph.D. dissertation, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand India
go back to reference Murata A, Mochizuki S (2001) Comparison between laminar and turbulent heat transfer in a stationary square duct with transverse or angled rib turbulators. Int J Heat Mass Transf 44(6):1127–1141MATHCrossRef Murata A, Mochizuki S (2001) Comparison between laminar and turbulent heat transfer in a stationary square duct with transverse or angled rib turbulators. Int J Heat Mass Transf 44(6):1127–1141MATHCrossRef
go back to reference Nakayama W, Takahashi K, Daikoku T (1983) Spiral ribbing to enhance single-phase heat transfer inside tubes. In: Proceedings of the ASME-JSME thermal engineering joint conference, Honolulu, HI, vol 1. ASME, New York, pp 503–510 Nakayama W, Takahashi K, Daikoku T (1983) Spiral ribbing to enhance single-phase heat transfer inside tubes. In: Proceedings of the ASME-JSME thermal engineering joint conference, Honolulu, HI, vol 1. ASME, New York, pp 503–510
go back to reference Naphon P (2007) Heat transfer characteristics and pressure drop in channel with v corrugated upper and lower plates. Energy Convers Manag 48(5):1516–1524CrossRef Naphon P (2007) Heat transfer characteristics and pressure drop in channel with v corrugated upper and lower plates. Energy Convers Manag 48(5):1516–1524CrossRef
go back to reference Naphon P, Nuchjapo M, Kurujareon J (2006) Tube side heat transfer coefficient and friction factor characteristics of horizontal tubes with helical rib. Energy Convers Manag 47:3031–3044CrossRef Naphon P, Nuchjapo M, Kurujareon J (2006) Tube side heat transfer coefficient and friction factor characteristics of horizontal tubes with helical rib. Energy Convers Manag 47:3031–3044CrossRef
go back to reference Newson IH, Hodgson TD (1973) The development of enhanced heat transfer condenser tubing. Desalination 14:291–323CrossRef Newson IH, Hodgson TD (1973) The development of enhanced heat transfer condenser tubing. Desalination 14:291–323CrossRef
go back to reference Ooi A, Iaccarino G, Durbin PA, Behnia M (2002) Reynolds averaged simulation of flow and heat transfer in ribbed ducts. Int J Heat Fluid Flow 23:750–757CrossRef Ooi A, Iaccarino G, Durbin PA, Behnia M (2002) Reynolds averaged simulation of flow and heat transfer in ribbed ducts. Int J Heat Fluid Flow 23:750–757CrossRef
go back to reference Ortiz L, Guerrero A, Arana C, Mendez R (2008) Heat transfer enhancement in a horizontal channel by the addition of curved deflectors. Int J Heat Mass Transf 51(15–16):3972–3984MATHCrossRef Ortiz L, Guerrero A, Arana C, Mendez R (2008) Heat transfer enhancement in a horizontal channel by the addition of curved deflectors. Int J Heat Mass Transf 51(15–16):3972–3984MATHCrossRef
go back to reference Pal SK, Bhattacharyya S (2018) Enhanced heat transfer of cu-water nanofluid in a channel with wall mounted blunt ribs. J Enhanc Heat Transf 25(1):61–78CrossRef Pal SK, Bhattacharyya S (2018) Enhanced heat transfer of cu-water nanofluid in a channel with wall mounted blunt ribs. J Enhanc Heat Transf 25(1):61–78CrossRef
go back to reference Pawar CB, Aharwal KR, Chaube A (2009) Heat transfer and fluid flow characteristics of rib-groove roughened solar air heater ducts. Indian J Sci Technol 2(11):50–54 Pawar CB, Aharwal KR, Chaube A (2009) Heat transfer and fluid flow characteristics of rib-groove roughened solar air heater ducts. Indian J Sci Technol 2(11):50–54
go back to reference Peng X, Peterson G (1996) Convective heat transfer and flow friction for water flow in microchannel structures. Int J Heat Mass Transf 39(12):2599–2608CrossRef Peng X, Peterson G (1996) Convective heat transfer and flow friction for water flow in microchannel structures. Int J Heat Mass Transf 39(12):2599–2608CrossRef
go back to reference Perng SW, Wu HW (2013) Heat transfer enhancement for turbulent mixed convection in reciprocating channels by various rib installations. J Enhanc Heat Transf 20(2):95–114CrossRef Perng SW, Wu HW (2013) Heat transfer enhancement for turbulent mixed convection in reciprocating channels by various rib installations. J Enhanc Heat Transf 20(2):95–114CrossRef
go back to reference Prasad BN (2013) Thermal performance of artificially roughened solar air heaters. Sol Energy 91:59–67CrossRef Prasad BN (2013) Thermal performance of artificially roughened solar air heaters. Sol Energy 91:59–67CrossRef
go back to reference Prasad K, Mulick SC (1983) Heat transfer characteristics of a solar air heater used for drying purposes. Appl Energy 13:83–93CrossRef Prasad K, Mulick SC (1983) Heat transfer characteristics of a solar air heater used for drying purposes. Appl Energy 13:83–93CrossRef
go back to reference Prasad BN, Saini JS (1988) Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Sol Energy 41:555–560CrossRef Prasad BN, Saini JS (1988) Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Sol Energy 41:555–560CrossRef
go back to reference Prasad BN, Behura AK, Prasad L (2014) Fluid flow and heat transfer analysis for heat transfer enhancement in three sided artificially roughened solar air heater. Sol Energy 105:27–35CrossRef Prasad BN, Behura AK, Prasad L (2014) Fluid flow and heat transfer analysis for heat transfer enhancement in three sided artificially roughened solar air heater. Sol Energy 105:27–35CrossRef
go back to reference Rabas TJ, Bergles AE, Moen DL (1988) Heat transfer and pressure drop correlations for spirally grooved (rope) tubes used in surface condensers and multistage flash evaporators. In: Augmentation of heat transfer in energy systems, ASME Symp. HTD, vol 52, pp 693–704 Rabas TJ, Bergles AE, Moen DL (1988) Heat transfer and pressure drop correlations for spirally grooved (rope) tubes used in surface condensers and multistage flash evaporators. In: Augmentation of heat transfer in energy systems, ASME Symp. HTD, vol 52, pp 693–704
go back to reference Rabas TJ, Thors P, Webb RL, Kim N-H (1993) Influence of roughness shape and spacing on the performance of three-dimensional helically dimpled tubes. J Enhanc Heat Transf 1:53–64CrossRef Rabas TJ, Thors P, Webb RL, Kim N-H (1993) Influence of roughness shape and spacing on the performance of three-dimensional helically dimpled tubes. J Enhanc Heat Transf 1:53–64CrossRef
go back to reference Raja Rao M (1988) Heat transfer and friction correlations for turbulent flow of water and viscous non Newtonian fluids in single-start spirally corrugated tubes. In: Proceedings of the 1988 national heat transfer conference HTD-96, vol 1, pp 677–683 Raja Rao M (1988) Heat transfer and friction correlations for turbulent flow of water and viscous non Newtonian fluids in single-start spirally corrugated tubes. In: Proceedings of the 1988 national heat transfer conference HTD-96, vol 1, pp 677–683
go back to reference Rau G, Cakan M, Moeller D, Arts T (1998) The effect of periodic ribs on the local aerodynamic and heat transfer performance of a straight cooling channel. ASME J Turbomach 120(2):368–375CrossRef Rau G, Cakan M, Moeller D, Arts T (1998) The effect of periodic ribs on the local aerodynamic and heat transfer performance of a straight cooling channel. ASME J Turbomach 120(2):368–375CrossRef
go back to reference Ravigururajan TS, Bergles AE (1985) General correlations for pressure drop and heat transfer for single-phase turbulent flow in internally ribbed tubes. In: Augmentation of heat transfer in energy systems, ASME Symp. HTD, vol 52, pp 9–20 Ravigururajan TS, Bergles AE (1985) General correlations for pressure drop and heat transfer for single-phase turbulent flow in internally ribbed tubes. In: Augmentation of heat transfer in energy systems, ASME Symp. HTD, vol 52, pp 9–20
go back to reference Ravigururajan TS, Bergles AE (1996) Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes. Exp Therm Fluid Sci 13:55–70CrossRef Ravigururajan TS, Bergles AE (1996) Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes. Exp Therm Fluid Sci 13:55–70CrossRef
go back to reference Saha AK, Acharya S (2005) Flow and heat transfer in an internally ribbed duct with rotation: an assessment of large eddy simulations and unsteady Reynolds-averaged Navier–Stokes simulations. ASME J Turbomach 127(2):306–320CrossRef Saha AK, Acharya S (2005) Flow and heat transfer in an internally ribbed duct with rotation: an assessment of large eddy simulations and unsteady Reynolds-averaged Navier–Stokes simulations. ASME J Turbomach 127(2):306–320CrossRef
go back to reference Sahu MM, Bhagoria JL (2005) Augmentation of heat transfer coefficient by using 90° broken transverse ribs on absorber plate of solar air heater. Renew Energy 30:2057–2063CrossRef Sahu MM, Bhagoria JL (2005) Augmentation of heat transfer coefficient by using 90° broken transverse ribs on absorber plate of solar air heater. Renew Energy 30:2057–2063CrossRef
go back to reference Sahu MK, Prasad RK (2016) A review of the thermal and hydrodynamic performance of solar air heater with roughened absorber plates. J Enhanc Heat Transf 23(1):47–89CrossRef Sahu MK, Prasad RK (2016) A review of the thermal and hydrodynamic performance of solar air heater with roughened absorber plates. J Enhanc Heat Transf 23(1):47–89CrossRef
go back to reference Saidi A, Sunden B (2000) Numerical simulation of turbulent convective heat transfer in square ribbed ducts. Numer Heat Transf 38:67–88CrossRef Saidi A, Sunden B (2000) Numerical simulation of turbulent convective heat transfer in square ribbed ducts. Numer Heat Transf 38:67–88CrossRef
go back to reference Saini RP, Saini JS (1997) Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughened element. Int J Heat Mass Transf 40:973–986CrossRef Saini RP, Saini JS (1997) Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughened element. Int J Heat Mass Transf 40:973–986CrossRef
go back to reference Saini SK, Saini RP (2008) Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Sol Energy 82:1118–1130CrossRef Saini SK, Saini RP (2008) Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Sol Energy 82:1118–1130CrossRef
go back to reference Saini RP, Verma J (2008) Heat transfer and friction factor correlations for a duct having dimple shaped artificial roughness for solar air heaters. Energy 33:1277–1287CrossRef Saini RP, Verma J (2008) Heat transfer and friction factor correlations for a duct having dimple shaped artificial roughness for solar air heaters. Energy 33:1277–1287CrossRef
go back to reference Schüler M, Zehnder F, Weigand B, von Wolfersdorf J, Neumann SO (2011) The effect of turning vanes on pressure loss and heat transfer of a ribbed rectangular two-pass internal cooling channel. ASME J Turbomach 133(2):021017CrossRef Schüler M, Zehnder F, Weigand B, von Wolfersdorf J, Neumann SO (2011) The effect of turning vanes on pressure loss and heat transfer of a ribbed rectangular two-pass internal cooling channel. ASME J Turbomach 133(2):021017CrossRef
go back to reference Sethi M, Varun, Thakur NS (2012) Correlations for solar air heater duct with dimpled shape roughness elements on absorber plate. Sol Energy 86:2852–2861CrossRef Sethi M, Varun, Thakur NS (2012) Correlations for solar air heater duct with dimpled shape roughness elements on absorber plate. Sol Energy 86:2852–2861CrossRef
go back to reference Sethumadhavan R, Raja Rao M (1983) Turbulent flow heat transfer and fluid friction in helical wire coil inserted tubes. Int J Heat Mass Transf 26:1833–1845CrossRef Sethumadhavan R, Raja Rao M (1983) Turbulent flow heat transfer and fluid friction in helical wire coil inserted tubes. Int J Heat Mass Transf 26:1833–1845CrossRef
go back to reference Sethumadhavan R, Raja Rao M (1986) Turbulent flow friction and heat transfer characteristics of single- and multi-start spirally enhanced tubes. J Heat Transf 108:55–61CrossRef Sethumadhavan R, Raja Rao M (1986) Turbulent flow friction and heat transfer characteristics of single- and multi-start spirally enhanced tubes. J Heat Transf 108:55–61CrossRef
go back to reference Sheriff N, Gumley P (1966) Heat transfer and friction properties of surfaces with discrete roughness. Int J Heat Mass Transf 9:1297–1320CrossRef Sheriff N, Gumley P (1966) Heat transfer and friction properties of surfaces with discrete roughness. Int J Heat Mass Transf 9:1297–1320CrossRef
go back to reference Singh S, Chander S, Saini JS (2011) Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs. Energy 36:5053–5064CrossRef Singh S, Chander S, Saini JS (2011) Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs. Energy 36:5053–5064CrossRef
go back to reference Slanciauskas A (2001) Two friendly rules for the turbulent heat transfer enhancement. Int J Heat Mass Transf 44:2155–2161CrossRef Slanciauskas A (2001) Two friendly rules for the turbulent heat transfer enhancement. Int J Heat Mass Transf 44:2155–2161CrossRef
go back to reference Sui Y, Teo C, Lee P, Chew Y, Shu C (2010) Fluid flow and heat transfer in wavy microchannels. Int J Heat Mass Transf 53(13):2760–2772MATHCrossRef Sui Y, Teo C, Lee P, Chew Y, Shu C (2010) Fluid flow and heat transfer in wavy microchannels. Int J Heat Mass Transf 53(13):2760–2772MATHCrossRef
go back to reference Suresh S, Chandrasekar M, Chandrasekar S (2001) Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube. Exp Thermal Fluid Sci 35:542–549CrossRef Suresh S, Chandrasekar M, Chandrasekar S (2001) Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube. Exp Thermal Fluid Sci 35:542–549CrossRef
go back to reference Takahashi K, Nakayama W, Kuwahara H (1988) Enhancement of forced convective heat transfer in tubes having three-dimensional spiral ribs. Heat Transf Jpn Res 17(4):12–28 Takahashi K, Nakayama W, Kuwahara H (1988) Enhancement of forced convective heat transfer in tubes having three-dimensional spiral ribs. Heat Transf Jpn Res 17(4):12–28
go back to reference Tanasawa I, Nishio S, Takano K, Tado M (1983) Enhancement of forced convection heat transfer in rectangular channel using turbulence promoters. In: Mori Y, Tanasawa I (eds) ASME-JSME thermal engineering joint conference, vol 1. ASME, New York, pp 395–402 Tanasawa I, Nishio S, Takano K, Tado M (1983) Enhancement of forced convection heat transfer in rectangular channel using turbulence promoters. In: Mori Y, Tanasawa I (eds) ASME-JSME thermal engineering joint conference, vol 1. ASME, New York, pp 395–402
go back to reference Tanasawa I, Nishio S, Takano K, Miyazaki H (1985) Augmentation of forced convection heat transfer using novel rib-type turbulence promoters. Research on Effective use of Thermal Energy, The Ministry of Education Tanasawa I, Nishio S, Takano K, Miyazaki H (1985) Augmentation of forced convection heat transfer using novel rib-type turbulence promoters. Research on Effective use of Thermal Energy, The Ministry of Education
go back to reference Tanda G (2004) Heat transfer in rectangular channels with transverse and V-shaped broken ribs. Int J Heat Mass Transf 47:229–243CrossRef Tanda G (2004) Heat transfer in rectangular channels with transverse and V-shaped broken ribs. Int J Heat Mass Transf 47:229–243CrossRef
go back to reference Tanda G (2016) Performance of solar air heater ducts with different types of ribs on the absorber plate. Energy 36:6651–6660CrossRef Tanda G (2016) Performance of solar air heater ducts with different types of ribs on the absorber plate. Energy 36:6651–6660CrossRef
go back to reference Taslim ME, Spring SD (1988) An experimental investigation of heat transfer coefficients and friction factors in passages of different aspect ratios roughened with 45 degree turbulators. In: Proceedings of the 1988 national heat transfer conference, HTD-96, vol 1, pp 661–668 Taslim ME, Spring SD (1988) An experimental investigation of heat transfer coefficients and friction factors in passages of different aspect ratios roughened with 45 degree turbulators. In: Proceedings of the 1988 national heat transfer conference, HTD-96, vol 1, pp 661–668
go back to reference Taslim ME, Spring SD (1994) Effects of turbulator profile and spacing on heat transfer and friction in a channel. J Thermophys Heat Transf 8:555–562CrossRef Taslim ME, Spring SD (1994) Effects of turbulator profile and spacing on heat transfer and friction in a channel. J Thermophys Heat Transf 8:555–562CrossRef
go back to reference Taslim ME, Setayeshgar L, Spring SD (2001) An experimental evaluation of advanced leading edge impingement cooling concepts. Int J Turbomach 123(1):147–153CrossRef Taslim ME, Setayeshgar L, Spring SD (2001) An experimental evaluation of advanced leading edge impingement cooling concepts. Int J Turbomach 123(1):147–153CrossRef
go back to reference Thianpong C, Eiamsa-ard P, Wongcharee K, Eiamsa-ard S (2009) Compound heat transfer enhancement of a dimpled tube with a twisted tape swirl generator. Int Commun Heat Mass Transf 36:698–704CrossRef Thianpong C, Eiamsa-ard P, Wongcharee K, Eiamsa-ard S (2009) Compound heat transfer enhancement of a dimpled tube with a twisted tape swirl generator. Int Commun Heat Mass Transf 36:698–704CrossRef
go back to reference Thors P, Clevinger NR, Campbell BJ, Tyler JT (1997) Heat transfer tubes and methods of fabrication thereof. U.S. patent 5,697,430, December 16 Thors P, Clevinger NR, Campbell BJ, Tyler JT (1997) Heat transfer tubes and methods of fabrication thereof. U.S. patent 5,697,430, December 16
go back to reference Varun, Saini RP, Singal SK (2007) A review on roughness geometry used in solar air heaters. Sol Energy 81:1340–1350CrossRef Varun, Saini RP, Singal SK (2007) A review on roughness geometry used in solar air heaters. Sol Energy 81:1340–1350CrossRef
go back to reference Varun, Saini RP, Singal SK (2008) Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on absorber plate. Renew Energy l33:1398–1405CrossRef Varun, Saini RP, Singal SK (2008) Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on absorber plate. Renew Energy l33:1398–1405CrossRef
go back to reference Verma SK, Prasad BN (2000) Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters. Renew Energy 20:19–36CrossRef Verma SK, Prasad BN (2000) Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters. Renew Energy 20:19–36CrossRef
go back to reference Vicente PG, Garcia A, Viedma A (2002) Heat transfer and pressure drop for low Reynolds turbulent flow in helically dimpled tubes. Int J Heat Mass Transf 45:543–553CrossRef Vicente PG, Garcia A, Viedma A (2002) Heat transfer and pressure drop for low Reynolds turbulent flow in helically dimpled tubes. Int J Heat Mass Transf 45:543–553CrossRef
go back to reference Viswanathan AK, Tafti DK (2006) A comparative study of DES and URANS for flow prediction in a two-pass internal cooling duct. ASME J Fluids Eng 128(6):1136–1345CrossRef Viswanathan AK, Tafti DK (2006) A comparative study of DES and URANS for flow prediction in a two-pass internal cooling duct. ASME J Fluids Eng 128(6):1136–1345CrossRef
go back to reference Vyas S, Manglik RM, Milind AJ (2010) Visualization and characterization of a lateral swirl flow structure in sinusoidal corrugated-plate channels. J Flow Visual Image Process 17(4):281–296CrossRef Vyas S, Manglik RM, Milind AJ (2010) Visualization and characterization of a lateral swirl flow structure in sinusoidal corrugated-plate channels. J Flow Visual Image Process 17(4):281–296CrossRef
go back to reference Wang CC, Chen CK (2002) Forced convection in a wavy-wall channel. Int J Heat Mass Transf 45(12):2587–2595MATHCrossRef Wang CC, Chen CK (2002) Forced convection in a wavy-wall channel. Int J Heat Mass Transf 45(12):2587–2595MATHCrossRef
go back to reference Wang L, Sunden B (2005) Experimental investigation of local heat transfer in square duct with continuous and truncated ribs. Exp Heat Transf 18:179–197CrossRef Wang L, Sunden B (2005) Experimental investigation of local heat transfer in square duct with continuous and truncated ribs. Exp Heat Transf 18:179–197CrossRef
go back to reference Webb RL, Kim NH (2005) Principles of enhanced heat transfer. Taylor & Francis, New York Webb RL, Kim NH (2005) Principles of enhanced heat transfer. Taylor & Francis, New York
go back to reference Webb RL, Eckert ERG (1972) Application of rough surfaces to heat exchanger design. Int J Heat Mass Transf 15:1647–1658CrossRef Webb RL, Eckert ERG (1972) Application of rough surfaces to heat exchanger design. Int J Heat Mass Transf 15:1647–1658CrossRef
go back to reference Webb RL, Eckert ERG, Goldstein RJ (1971) Heat transfer and friction in tubes with repeated rib roughness. Int J Heat Mass Transf 14:601–617CrossRef Webb RL, Eckert ERG, Goldstein RJ (1971) Heat transfer and friction in tubes with repeated rib roughness. Int J Heat Mass Transf 14:601–617CrossRef
go back to reference Webb RL, Narayanamurthy R, Thors P (2000) Heat transfer and friction characteristics of internal helical-rib roughness. J Heat Transf 122:134–142CrossRef Webb RL, Narayanamurthy R, Thors P (2000) Heat transfer and friction characteristics of internal helical-rib roughness. J Heat Transf 122:134–142CrossRef
go back to reference Wei X, Joshi Y, Ligrani P (2007) Numerical simulation of laminar flow and heat transfer inside a microchannel with one dimpled surface. ASME J Electron Packag 129(1):63–70CrossRef Wei X, Joshi Y, Ligrani P (2007) Numerical simulation of laminar flow and heat transfer inside a microchannel with one dimpled surface. ASME J Electron Packag 129(1):63–70CrossRef
go back to reference White L, Wilkie D (1970) The heat transfer and pressure loss characteristics of some multi-start ribbed surfaces. In: Augmentation of convective heat and mass transfer. ASME, New York, pp 55–62 White L, Wilkie D (1970) The heat transfer and pressure loss characteristics of some multi-start ribbed surfaces. In: Augmentation of convective heat and mass transfer. ASME, New York, pp 55–62
go back to reference Withada J, Boonloi A (2014) Effects of blockage ratio and pitch ratio on thermal performance in a square channel with 301 double V-affles. Case Stud Therm Eng 4:118–128CrossRef Withada J, Boonloi A (2014) Effects of blockage ratio and pitch ratio on thermal performance in a square channel with 301 double V-affles. Case Stud Therm Eng 4:118–128CrossRef
go back to reference Withada J, Suwannapan S, Promvonge P (2011) Numerical study of laminar heat transfer in baffled square channel with various pitches. Energy Procedia 9:630–642CrossRef Withada J, Suwannapan S, Promvonge P (2011) Numerical study of laminar heat transfer in baffled square channel with various pitches. Energy Procedia 9:630–642CrossRef
go back to reference Wilkie D (1966) Forced convection heat transfer from surfaces roughened by transverse ribs. In: Third international heat transfer conference, vol 1, pp 1–19 Wilkie D (1966) Forced convection heat transfer from surfaces roughened by transverse ribs. In: Third international heat transfer conference, vol 1, pp 1–19
go back to reference Wilkie D, Cowan M, Burnett P, Burgoyne T (1967) Friction factor measurements in a rectangular channel with walls of identical and non-identical roughness. Int J Heat Mass Transf 10:611–621CrossRef Wilkie D, Cowan M, Burnett P, Burgoyne T (1967) Friction factor measurements in a rectangular channel with walls of identical and non-identical roughness. Int J Heat Mass Transf 10:611–621CrossRef
go back to reference Williams F, Pirie MAM, Warburton C (1970) Heat transfer from surfaces roughened by ribs. In: Augmentation of convective heat and mass transfer. ASME, New York, pp 55–62 Williams F, Pirie MAM, Warburton C (1970) Heat transfer from surfaces roughened by ribs. In: Augmentation of convective heat and mass transfer. ASME, New York, pp 55–62
go back to reference Withers JG (1980a) Tube-side heat transfer and pressure drop for tubes having helical internal ridging with turbulent/transitional flow of single-phase fluid. Part l: single-helix ridging. Heat Transf Eng 2(1):48–58CrossRef Withers JG (1980a) Tube-side heat transfer and pressure drop for tubes having helical internal ridging with turbulent/transitional flow of single-phase fluid. Part l: single-helix ridging. Heat Transf Eng 2(1):48–58CrossRef
go back to reference Withers JG (1980b) Tube-side heat transfer and pressure drop for tubes having helical internal ridging with turbulent/transitional flow of single-phase fluid. Part 2: multiple-helix ridging. Heat Transf Eng 2(2):43–50CrossRef Withers JG (1980b) Tube-side heat transfer and pressure drop for tubes having helical internal ridging with turbulent/transitional flow of single-phase fluid. Part 2: multiple-helix ridging. Heat Transf Eng 2(2):43–50CrossRef
go back to reference Wongcharee K, Changcharoen W, Eiamsa-ard S (2011) Numerical investigation of flow friction and heat transfer in a channel with various shaped ribs mounted on two opposite ribbed walls. Int J Chem React Eng 9:26 Wongcharee K, Changcharoen W, Eiamsa-ard S (2011) Numerical investigation of flow friction and heat transfer in a channel with various shaped ribs mounted on two opposite ribbed walls. Int J Chem React Eng 9:26
go back to reference Wright LM, Han JC (2014) Heat transfer enhancement for turbine blade internal cooling. J Enhanc Heat Transf 21(2–3):111–140CrossRef Wright LM, Han JC (2014) Heat transfer enhancement for turbine blade internal cooling. J Enhanc Heat Transf 21(2–3):111–140CrossRef
go back to reference Xie GN, Zheng SF, Sunden B, Zhang WH (2013) A numerical investigation of flow structure and heat transfer enhancement in square ribbed channels with differently positioned deflectors. J Enhanc Heat Transf 20(3):195–212CrossRef Xie GN, Zheng SF, Sunden B, Zhang WH (2013) A numerical investigation of flow structure and heat transfer enhancement in square ribbed channels with differently positioned deflectors. J Enhanc Heat Transf 20(3):195–212CrossRef
go back to reference Yadav S, Kaushal M, Varun (2013) Siddhartha Nusselt number and friction factor correlations for solar air heater duct having protrusions as roughness elements on absorber plate. Exp Thermal Fluid Sci 44:34–41CrossRef Yadav S, Kaushal M, Varun (2013) Siddhartha Nusselt number and friction factor correlations for solar air heater duct having protrusions as roughness elements on absorber plate. Exp Thermal Fluid Sci 44:34–41CrossRef
go back to reference Zhang YF, Li FY, Liang ZM (1991) Heat transfer in spiral-coil-inserted tubes and its application. In: Ebadian MA, Pepper DW, Diller T (eds) Advances in heat transfer augmentation, ASME Symp. HTD, vol 169, pp 31–36 Zhang YF, Li FY, Liang ZM (1991) Heat transfer in spiral-coil-inserted tubes and its application. In: Ebadian MA, Pepper DW, Diller T (eds) Advances in heat transfer augmentation, ASME Symp. HTD, vol 169, pp 31–36
go back to reference Zukauskas AA, Ulinskas RV (1983) Surface roughness as means of heat transfer augmentation for banks of tubes in crossflow. In: Taborek J, Hewitt GP, Afgan N (eds) Heat exchangers: theory and practice. Hemisphere, Washington, DC, pp 311–321 Zukauskas AA, Ulinskas RV (1983) Surface roughness as means of heat transfer augmentation for banks of tubes in crossflow. In: Taborek J, Hewitt GP, Afgan N (eds) Heat exchangers: theory and practice. Hemisphere, Washington, DC, pp 311–321
go back to reference Zukauskas AA, Ulinskas RV (1988) Heat transfer in tube banks in crossflow. Hemisphere, New York, pp 94–118 Zukauskas AA, Ulinskas RV (1988) Heat transfer in tube banks in crossflow. Hemisphere, New York, pp 94–118
Metadata
Title
2D Roughness, 3D Roughness and Roughness Applications
Authors
Sujoy Kumar Saha
Hrishiraj Ranjan
Madhu Sruthi Emani
Anand Kumar Bharti
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-20776-2_6

Premium Partners