Skip to main content
Top
Published in: Wireless Personal Communications 4/2021

01-03-2021

3-D Target Localization Based on Bi-static Range Measurements in Widely Separated MIMO Radars

Authors: Mohammad Mahdi Feraidooni, Davood Gharavian, Mohammad Peimany, Sadjad Imani

Published in: Wireless Personal Communications | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a three-dimensional target localization problem in widely separated multiple-input multiple-output radars is solved using two specific techniques based on time difference of arrival measurements. These techniques are provided in terms of transmitter and receiver antennas, which are named as technique_t and technique_r, respectively. The localization problem is rewritten as a non-convex optimization problem which is based on a least-squares method without any initial estimation. Therefore, a convex semidefinite programming problem is obtained by utilizing the semidefinite relaxation method for the problem which can be performed via the CVX toolbox. Several simulations are provided to evaluate the positioning accuracy in terms of bi-static range error for 3 and 4 transmitter/receiver antennas, different antenna arrangements, and near/far target. In other simulations, the localization accuracy is evaluated in terms of the empirical cumulative density function of positioning error. The results show that the proposed techniques have better accuracy and performance in different scenarios in comparison with other compared methods. The last simulation also demonstrates that the computational time of the mentioned techniques is 0.69 s which is suitable for real-time processing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aubry, A., Maio, A. D., & Huang, Y. (2016). MIMO radar beampattern design via PSL/ISL optimization. IEEE Transactions on Signal Processing, 64(15), 3955–3967.MathSciNetCrossRef Aubry, A., Maio, A. D., & Huang, Y. (2016). MIMO radar beampattern design via PSL/ISL optimization. IEEE Transactions on Signal Processing, 64(15), 3955–3967.MathSciNetCrossRef
2.
go back to reference Feraidooni, M. M., Gharavian, D., Alaee-Kerahroodi, M., & Imani, S. (2020). A coordinate descent framework for probing signal design in cognitive MIMO radars. IEEE Communications Letters, 24, 1115–1118.CrossRef Feraidooni, M. M., Gharavian, D., Alaee-Kerahroodi, M., & Imani, S. (2020). A coordinate descent framework for probing signal design in cognitive MIMO radars. IEEE Communications Letters, 24, 1115–1118.CrossRef
3.
go back to reference Abtahi, A., Azghani, M., & Marvasti, F. (2019). An adaptive iterative thresholding algorithm for distributed MIMO radars. IEEE Transactions on Aerospace and Electronic Systems, 55(2), 523–533.CrossRef Abtahi, A., Azghani, M., & Marvasti, F. (2019). An adaptive iterative thresholding algorithm for distributed MIMO radars. IEEE Transactions on Aerospace and Electronic Systems, 55(2), 523–533.CrossRef
4.
go back to reference Imani, S., Feraidooni, M. M., Gharavian, D., & Nayebi, M. M. (2020). SINR improvement based on joint design of transmit covariance matrix and receive filter design for colocated MIMO radar. IET Communications, pp. 1–10. Imani, S., Feraidooni, M. M., Gharavian, D., & Nayebi, M. M. (2020). SINR improvement based on joint design of transmit covariance matrix and receive filter design for colocated MIMO radar. IET Communications, pp. 1–10.
5.
go back to reference Janatian, N., Modarres-Hashemi, M., & Sheikhi, A. (2013). CFAR detectors for MIMO radars. CSSP, 32(3), 1389–1418. Janatian, N., Modarres-Hashemi, M., & Sheikhi, A. (2013). CFAR detectors for MIMO radars. CSSP, 32(3), 1389–1418.
6.
go back to reference Feraidooni, M. M., Gharavian, D., & Imani, S. (2019). Signal-dependent interference reduction based on a new transmit covariance matrix and receive filter design for co-located MIMO radar. Signal, Image and Video Processing, 13, 1275–1282.CrossRef Feraidooni, M. M., Gharavian, D., & Imani, S. (2019). Signal-dependent interference reduction based on a new transmit covariance matrix and receive filter design for co-located MIMO radar. Signal, Image and Video Processing, 13, 1275–1282.CrossRef
7.
go back to reference Gong, J., Lou, S., & Guo, Y. (2019). A robust angle estimation method for bistatic MIMO radar about non-stationary random noise. Wireless Personal Communications, 106(2), 439–450.CrossRef Gong, J., Lou, S., & Guo, Y. (2019). A robust angle estimation method for bistatic MIMO radar about non-stationary random noise. Wireless Personal Communications, 106(2), 439–450.CrossRef
8.
go back to reference Feraidooni, M.M., Alaee-Kerahroodi, M., Imani, S., & Gharavian, D. (2019). Designing set of binary sequences and space-time receive filter for moving targets in colocated MIMO radar systems. In 2019 20th International Radar Symposium (IRS). Feraidooni, M.M., Alaee-Kerahroodi, M., Imani, S., & Gharavian, D. (2019). Designing set of binary sequences and space-time receive filter for moving targets in colocated MIMO radar systems. In 2019 20th International Radar Symposium (IRS).
9.
go back to reference Haghnegahdar, M., Imani, S., Ghorashi, S. A., & Mehrshahi, E. (2017). A new iterative approach in SINR improvement of MIMO radars by using combination of orthogonal waveforms. Wireless Personal Communications, 97(2), 2069–2085.CrossRef Haghnegahdar, M., Imani, S., Ghorashi, S. A., & Mehrshahi, E. (2017). A new iterative approach in SINR improvement of MIMO radars by using combination of orthogonal waveforms. Wireless Personal Communications, 97(2), 2069–2085.CrossRef
10.
go back to reference Feraidooni, M. M., Gharavian, D., Imani, S., & Kerahroodi, M. A. (2020). Designing m-ary sequences and space-time receive filter for moving target in cognitive MIMO radar systems. Signal Processing, 174, 107620.CrossRef Feraidooni, M. M., Gharavian, D., Imani, S., & Kerahroodi, M. A. (2020). Designing m-ary sequences and space-time receive filter for moving target in cognitive MIMO radar systems. Signal Processing, 174, 107620.CrossRef
11.
go back to reference Li, J., & Stoica, P. (2009). MIMO radar signal processing. New York, NY: Wiley. Li, J., & Stoica, P. (2009). MIMO radar signal processing. New York, NY: Wiley.
12.
go back to reference Haimovich, A. M., Blum, R. S., & Cimini, L. J. (2008). MIMO radar with widely separated antennas. IEEE Signal Processing Magazine, 25(1), 116–129.CrossRef Haimovich, A. M., Blum, R. S., & Cimini, L. J. (2008). MIMO radar with widely separated antennas. IEEE Signal Processing Magazine, 25(1), 116–129.CrossRef
13.
go back to reference Imani, S., Nayebi, M. M., & Ghorashi, S. A. (2017). Transmit signal design in colocated MIMO radars without covariance matrix optimization. IEEE Transactions on Aerospace and Electronic Systems, 99, 2178–2186.CrossRef Imani, S., Nayebi, M. M., & Ghorashi, S. A. (2017). Transmit signal design in colocated MIMO radars without covariance matrix optimization. IEEE Transactions on Aerospace and Electronic Systems, 99, 2178–2186.CrossRef
14.
go back to reference Amiri, R., Behnia, F., & Sadr, M. A. M. (2017). Positioning in MIMO radars based on constrained least squares estimation. IEEE Communications Letters, 21, 2222–2225.CrossRef Amiri, R., Behnia, F., & Sadr, M. A. M. (2017). Positioning in MIMO radars based on constrained least squares estimation. IEEE Communications Letters, 21, 2222–2225.CrossRef
15.
go back to reference Amiri, R., Behnia, F., & Noroozi, A. (2019). Efficient algebraic solution for elliptic target localisation and antenna position refinement in multiple-input-multiple-output radars. IET Radar, Sonar Navigation, 13(11), 2046–2054.CrossRef Amiri, R., Behnia, F., & Noroozi, A. (2019). Efficient algebraic solution for elliptic target localisation and antenna position refinement in multiple-input-multiple-output radars. IET Radar, Sonar Navigation, 13(11), 2046–2054.CrossRef
16.
go back to reference Wang, Y., Wu, Y., & Shen, Y. (2019). On the resolution limits for MIMO localization. IEEE Communications Letters, 23, 462–465.CrossRef Wang, Y., Wu, Y., & Shen, Y. (2019). On the resolution limits for MIMO localization. IEEE Communications Letters, 23, 462–465.CrossRef
17.
go back to reference Amiri, R., & Behnia, F. (2017). An efficient weighted least squares estimator for elliptic localization in distributed MIMO radars. IEEE Signal Processing Letters, 24, 902–906.CrossRef Amiri, R., & Behnia, F. (2017). An efficient weighted least squares estimator for elliptic localization in distributed MIMO radars. IEEE Signal Processing Letters, 24, 902–906.CrossRef
18.
go back to reference Noroozi, A., & Sebt, M. A. (2015). Target localization from bistatic range measurements in multi-transmitter multi-receiver passive radar. IEEE Signal Processing Letters, 22, 2445–2449.CrossRef Noroozi, A., & Sebt, M. A. (2015). Target localization from bistatic range measurements in multi-transmitter multi-receiver passive radar. IEEE Signal Processing Letters, 22, 2445–2449.CrossRef
19.
go back to reference Du, Y., & Wei, P. (2014). An explicit solution for target localization in noncoherent distributed MIMO radar systems. IEEE Signal Processing Letters, 21, 1093–1097.CrossRef Du, Y., & Wei, P. (2014). An explicit solution for target localization in noncoherent distributed MIMO radar systems. IEEE Signal Processing Letters, 21, 1093–1097.CrossRef
20.
go back to reference Noroozi, A., Oveis, A. H., & Sebt, M. A. (2017). Iterative target localization in distributed MIMO radar from bistatic range measurements. IEEE Signal Processing Letters, 24, 1709–1713.CrossRef Noroozi, A., Oveis, A. H., & Sebt, M. A. (2017). Iterative target localization in distributed MIMO radar from bistatic range measurements. IEEE Signal Processing Letters, 24, 1709–1713.CrossRef
21.
go back to reference Amiri, R., Behnia, F., & Zamani, H. (2017). Asymptotically efficient target localization from bistatic range measurements in distributed MIMO radars. IEEE Signal Processing Letters, 24, 299–303.CrossRef Amiri, R., Behnia, F., & Zamani, H. (2017). Asymptotically efficient target localization from bistatic range measurements in distributed MIMO radars. IEEE Signal Processing Letters, 24, 299–303.CrossRef
22.
go back to reference Noroozi, A., Sebt, M. A., Hosseini, S. M., Amiri, R., & Nayebi, M. M. (2020). Closed-form solution for elliptic localization in distributed MIMO radar systems with minimum number of sensors. IEEE Transactions on Aerospace and Electronic Systems, 56(4), 3123–3133.CrossRef Noroozi, A., Sebt, M. A., Hosseini, S. M., Amiri, R., & Nayebi, M. M. (2020). Closed-form solution for elliptic localization in distributed MIMO radar systems with minimum number of sensors. IEEE Transactions on Aerospace and Electronic Systems, 56(4), 3123–3133.CrossRef
23.
go back to reference Wang, G., So, A. M. C., & Li, Y. (2016). Robust convex approximation methods for TDOA-based localization under NLOS conditions. IEEE Transactions on Signal Processing, 64, 3281–3296.MathSciNetCrossRef Wang, G., So, A. M. C., & Li, Y. (2016). Robust convex approximation methods for TDOA-based localization under NLOS conditions. IEEE Transactions on Signal Processing, 64, 3281–3296.MathSciNetCrossRef
24.
go back to reference Shi, X., Anderson, B. D. O., Mao, G., Yang, Z., Chen, J., & Lin, Z. (2016). Robust localization using time difference of arrivals. IEEE Signal Processing Letters, 23, 1320–1324.CrossRef Shi, X., Anderson, B. D. O., Mao, G., Yang, Z., Chen, J., & Lin, Z. (2016). Robust localization using time difference of arrivals. IEEE Signal Processing Letters, 23, 1320–1324.CrossRef
25.
go back to reference Yang, H., Chun, J., & Chae, D. (2015). Hyperbolic localization in MIMO radar systems. IEEE Antennas and Wireless Propagation Letters, 14, 618–621.CrossRef Yang, H., Chun, J., & Chae, D. (2015). Hyperbolic localization in MIMO radar systems. IEEE Antennas and Wireless Propagation Letters, 14, 618–621.CrossRef
26.
go back to reference Yang, K., Wang, G., & Luo, Z. Q. (2009). Efficient convex relaxation methods for robust target localization by a sensor network using time differences of arrivals. IEEE Transactions on Signal Processing, 57, 2775–2784.MathSciNetCrossRef Yang, K., Wang, G., & Luo, Z. Q. (2009). Efficient convex relaxation methods for robust target localization by a sensor network using time differences of arrivals. IEEE Transactions on Signal Processing, 57, 2775–2784.MathSciNetCrossRef
27.
go back to reference Wang, G., Li, Y., & Ansari, N. (2013). A semidefinite relaxation method for source localization using TDOA and FDOA measurements. IEEE Transactions on Vehicular Technology, 62, 853–862.CrossRef Wang, G., Li, Y., & Ansari, N. (2013). A semidefinite relaxation method for source localization using TDOA and FDOA measurements. IEEE Transactions on Vehicular Technology, 62, 853–862.CrossRef
28.
go back to reference Wang, Y., & Wu, Y. (2017). An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements. IEEE Communications Letters, 21, 80–83.CrossRef Wang, Y., & Wu, Y. (2017). An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements. IEEE Communications Letters, 21, 80–83.CrossRef
29.
go back to reference Amiri, R., Behnia, F., & Noroozi, A. (2019). Efficient joint moving target and antenna localization in distributed MIMO radars. IEEE Transactions on Wireless Communications, 18(9), 4425–4435.CrossRef Amiri, R., Behnia, F., & Noroozi, A. (2019). Efficient joint moving target and antenna localization in distributed MIMO radars. IEEE Transactions on Wireless Communications, 18(9), 4425–4435.CrossRef
30.
go back to reference Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York, NY: Cambridge University Press.CrossRef Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York, NY: Cambridge University Press.CrossRef
32.
go back to reference Ho, K., & Xu, W. (2004). An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Transactions on Signal Processing, 52, 2453–2463.MathSciNetCrossRef Ho, K., & Xu, W. (2004). An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Transactions on Signal Processing, 52, 2453–2463.MathSciNetCrossRef
Metadata
Title
3-D Target Localization Based on Bi-static Range Measurements in Widely Separated MIMO Radars
Authors
Mohammad Mahdi Feraidooni
Davood Gharavian
Mohammad Peimany
Sadjad Imani
Publication date
01-03-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08197-6

Other articles of this Issue 4/2021

Wireless Personal Communications 4/2021 Go to the issue