Skip to main content
Top
Published in: Journal of Materials Science 25/2020

28-04-2020 | Energy materials

3D highly oriented metal foam: a competitive self-supporting anode for high-performance lithium-ion batteries

Authors: Hairong Mao, Ping Shen, Guangyu Yang, Liang Zhao, Xiaoming Qiu, Huiyuan Wang, Qichuan Jiang

Published in: Journal of Materials Science | Issue 25/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To develop good rate capability and good cycle stability electrode, hierarchical porous coral-like ZnO/ZnCo2O4/Co3O4 coating was fabricated on a novel 3D straight-through layered copper current collector with one-step solution combustion method and used as self-supporting anode for lithium-ion batteries (LIBs). The coral-like ZnO/ZnCo2O4/Co3O4 coating facilitated the full penetration of the electrolyte and increased the activation rate of the active material. Also, the novel 3D copper current collector has an increased surface area compared to a traditional foam metal, providing an optimal structure for balancing the volume-change tolerance and the energy density of the porous electrode. In addition, the highly oriented structure favors the effective transport of electrons and Li ions within the 3D electrode. As a consequence, high reversible capacity of 1428 mAh g−1 at a current density of 200 mA g−1 after 100 cycles and excellent rate capability of 682 mAh g−1 at 1000 mA g−1 were achieved. This study provides a facile and scalable path toward high-performance self-supporting electrodes for LIBs and demonstrates that the volume density of self-supporting electrodes can be enhanced by increasing surface area of the 3D structured current collector.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29CrossRef Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29CrossRef
2.
go back to reference Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
3.
go back to reference Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRef
4.
go back to reference Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264CrossRef Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264CrossRef
5.
go back to reference Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRef Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRef
6.
go back to reference Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed Engl 53:1488–1504CrossRef Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed Engl 53:1488–1504CrossRef
7.
go back to reference Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:28–62CrossRef Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:28–62CrossRef
9.
go back to reference Wang J, Liao L, Lee HR, Shi F, Huang W, Zhao J, Pei A, Tang J, Zheng X, Chen W, Cui Y (2019) Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy 61:404–410CrossRef Wang J, Liao L, Lee HR, Shi F, Huang W, Zhao J, Pei A, Tang J, Zheng X, Chen W, Cui Y (2019) Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy 61:404–410CrossRef
10.
go back to reference Wang J, Liao L, Li Y, Zhao J, Shi F, Yan K, Pei A, Chen G, Li G, Lu Z, Cui Y (2018) Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries. Nano Lett 18:7060–7065CrossRef Wang J, Liao L, Li Y, Zhao J, Shi F, Yan K, Pei A, Chen G, Li G, Lu Z, Cui Y (2018) Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries. Nano Lett 18:7060–7065CrossRef
11.
go back to reference Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef
12.
go back to reference Lu L, Wang HY, Wang JG, Wang C, Jiang QC (2017) Design and synthesis of ZnO–NiO–Co3O4 hybrid nanoflakes as high-performance anode materials for Li-ion batteries. J Mater Chem A 5:2530–2538CrossRef Lu L, Wang HY, Wang JG, Wang C, Jiang QC (2017) Design and synthesis of ZnO–NiO–Co3O4 hybrid nanoflakes as high-performance anode materials for Li-ion batteries. J Mater Chem A 5:2530–2538CrossRef
13.
go back to reference Wang LT, Yang Q (2019) ZnCo2O4 nanoflakes loaded on a Cu-supported Fe2O3–C network as an integrated lithium-ion battery anode. J Alloys Compd 792:750–758CrossRef Wang LT, Yang Q (2019) ZnCo2O4 nanoflakes loaded on a Cu-supported Fe2O3–C network as an integrated lithium-ion battery anode. J Alloys Compd 792:750–758CrossRef
14.
go back to reference Kushima A, Liu XH, Zhu G, Wang ZL, Huang JY, Li J (2011) Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett 11:4535–4541CrossRef Kushima A, Liu XH, Zhu G, Wang ZL, Huang JY, Li J (2011) Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett 11:4535–4541CrossRef
15.
go back to reference Woods J, Bhattarai N, Chapagain P, Yang Y, Neupane S (2019) In situ transmission electron microscopy observations of rechargeable lithium ion batteries. Nano Energy 56:619–640CrossRef Woods J, Bhattarai N, Chapagain P, Yang Y, Neupane S (2019) In situ transmission electron microscopy observations of rechargeable lithium ion batteries. Nano Energy 56:619–640CrossRef
16.
go back to reference Zhang J, Wan J, Wang J, Ren H, Yu R, Gu L, Liu Y, Feng S, Wang D (2019) Hollow multi-shelled structure with metal-organic-framework-derived coatings for enhanced lithium storage. Angew Chem Int Ed 58:5266–5271CrossRef Zhang J, Wan J, Wang J, Ren H, Yu R, Gu L, Liu Y, Feng S, Wang D (2019) Hollow multi-shelled structure with metal-organic-framework-derived coatings for enhanced lithium storage. Angew Chem Int Ed 58:5266–5271CrossRef
18.
go back to reference Zhang GQ, Wu HB, Hoster HE, Chan-Park MB, Lou XW (2012) Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ Sci 5:9453–9456CrossRef Zhang GQ, Wu HB, Hoster HE, Chan-Park MB, Lou XW (2012) Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ Sci 5:9453–9456CrossRef
19.
go back to reference Zhang J, Chu R, Chen Y, Jiang H, Zhang Y, Huang NM, Guo H (2018) In-situ grown hierarchical ZnCo2O4 nanosheets on nickel foam as binder-free anode for lithium ion batteries. Ceram Int 44:16219–16226CrossRef Zhang J, Chu R, Chen Y, Jiang H, Zhang Y, Huang NM, Guo H (2018) In-situ grown hierarchical ZnCo2O4 nanosheets on nickel foam as binder-free anode for lithium ion batteries. Ceram Int 44:16219–16226CrossRef
20.
go back to reference Jadhav HS, Roy A, Chung WJ, Seo JG (2017) Growth of urchin-like ZnCo2O4 microspheres on nickel foam as a binder-free electrode for high-performance supercapacitor and methanol electro-oxidation. Electrochim Acta 246:941–950CrossRef Jadhav HS, Roy A, Chung WJ, Seo JG (2017) Growth of urchin-like ZnCo2O4 microspheres on nickel foam as a binder-free electrode for high-performance supercapacitor and methanol electro-oxidation. Electrochim Acta 246:941–950CrossRef
21.
go back to reference Pan Y, Gao H, Zhang M, Li L, Wang Z (2017) Facile synthesis of ZnCo2O4 micro-flowers and micro-sheets on Ni foam for pseudocapacitor electrodes. J Alloys Compd 702:381–387CrossRef Pan Y, Gao H, Zhang M, Li L, Wang Z (2017) Facile synthesis of ZnCo2O4 micro-flowers and micro-sheets on Ni foam for pseudocapacitor electrodes. J Alloys Compd 702:381–387CrossRef
22.
go back to reference Zhang Z, Zhang X, Feng Y, Wang X, Sun Q, Yu D, Tong W, Zhao X, Liu X (2018) Fabrication of porous ZnCo2O4 nanoribbon arrays on nickel foam for high-performance supercapacitors and lithium-ion batteries. Electrochim Acta 260:823–829CrossRef Zhang Z, Zhang X, Feng Y, Wang X, Sun Q, Yu D, Tong W, Zhao X, Liu X (2018) Fabrication of porous ZnCo2O4 nanoribbon arrays on nickel foam for high-performance supercapacitors and lithium-ion batteries. Electrochim Acta 260:823–829CrossRef
23.
go back to reference Cheng L, Xu M, Zhang QS, Li GC, Chen JX, Lou YB (2019) NH4F assisted and morphology-controlled fabrication of ZnCo2O4 nanostructures on Ni-foam for enhanced energy storage devices. J Alloys Compd 781:245–254CrossRef Cheng L, Xu M, Zhang QS, Li GC, Chen JX, Lou YB (2019) NH4F assisted and morphology-controlled fabrication of ZnCo2O4 nanostructures on Ni-foam for enhanced energy storage devices. J Alloys Compd 781:245–254CrossRef
25.
go back to reference Qu B, Hu L, Li Q, Wang Y, Chen L, Wang T (2014) High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. ACS Appl Mater Interfaces 6:731–736CrossRef Qu B, Hu L, Li Q, Wang Y, Chen L, Wang T (2014) High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. ACS Appl Mater Interfaces 6:731–736CrossRef
27.
go back to reference Yoo H, Lee G, Choi J (2019) Binder-free SnO2–TiO2 composite anode with high durability for lithium-ion batteries. RSC Adv 9:6589–6595CrossRef Yoo H, Lee G, Choi J (2019) Binder-free SnO2–TiO2 composite anode with high durability for lithium-ion batteries. RSC Adv 9:6589–6595CrossRef
28.
go back to reference Deng X, Fan Y, Zhou Q, Huang H, Zhou W, Lan Z, Liang X, Li G, Guo J, Tang S (2019) Self-supported Ni3S2/NiCo2O4 core-shell flakes-arrays on Ni foam for enhanced charge storage properties. Electrochim Acta 319:783–790CrossRef Deng X, Fan Y, Zhou Q, Huang H, Zhou W, Lan Z, Liang X, Li G, Guo J, Tang S (2019) Self-supported Ni3S2/NiCo2O4 core-shell flakes-arrays on Ni foam for enhanced charge storage properties. Electrochim Acta 319:783–790CrossRef
29.
go back to reference Zhao Y, Zhao M, Ding X, Liu Z, Tian H, Shen H, Zu X, Li S, Qiao L (2019) One-step colloid fabrication of nickel phosphides nanoplate/nickel foam hybrid electrode for high-performance asymmetric supercapacitors. Chem Eng J 373:1132–1143CrossRef Zhao Y, Zhao M, Ding X, Liu Z, Tian H, Shen H, Zu X, Li S, Qiao L (2019) One-step colloid fabrication of nickel phosphides nanoplate/nickel foam hybrid electrode for high-performance asymmetric supercapacitors. Chem Eng J 373:1132–1143CrossRef
30.
go back to reference Liu H, Guo Z, Xun X, Lian J (2019) Hierarchical Cu(OH)2/Co2(OH)2CO3 nanohybrid arrays grown on copper foam for high-performance battery-type supercapacitors. J Mater Sci: Mater Electron 30:11952–11963 Liu H, Guo Z, Xun X, Lian J (2019) Hierarchical Cu(OH)2/Co2(OH)2CO3 nanohybrid arrays grown on copper foam for high-performance battery-type supercapacitors. J Mater Sci: Mater Electron 30:11952–11963
31.
go back to reference An CS, Zhang B, Tang LB, Xiao B, He ZJ, Zheng JC (2019) Binder-free carbon-coated TiO2@graphene electrode by using copper foam as current collector as a high-performance anode for lithium ion batteries. Ceram Int 45:13144–13149CrossRef An CS, Zhang B, Tang LB, Xiao B, He ZJ, Zheng JC (2019) Binder-free carbon-coated TiO2@graphene electrode by using copper foam as current collector as a high-performance anode for lithium ion batteries. Ceram Int 45:13144–13149CrossRef
32.
go back to reference Zhang Y, Wang P, Zheng T, Li D, Li G, Yue Y (2018) Enhancing Li-ion battery anode performances via disorder/order engineering. Nano Energy 49:596–602CrossRef Zhang Y, Wang P, Zheng T, Li D, Li G, Yue Y (2018) Enhancing Li-ion battery anode performances via disorder/order engineering. Nano Energy 49:596–602CrossRef
33.
go back to reference Park H, Choi M, Choe H, Dunand DC (2017) Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Mater Sci Eng A 679:435–445CrossRef Park H, Choi M, Choe H, Dunand DC (2017) Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Mater Sci Eng A 679:435–445CrossRef
34.
go back to reference Park H, Cho HH, Kim K, Hong K, Kim JH, Choe H, Dunand DC (2018) Surface-oxidized, freeze-cast cobalt foams: microstructure, mechanical properties and electrochemical performance. Acta Mater 142:213–225CrossRef Park H, Cho HH, Kim K, Hong K, Kim JH, Choe H, Dunand DC (2018) Surface-oxidized, freeze-cast cobalt foams: microstructure, mechanical properties and electrochemical performance. Acta Mater 142:213–225CrossRef
35.
go back to reference Plunk AA, Dunand DC (2017) Iron foams created by directional freeze casting of iron oxide, reduction and sintering. Mater Lett 191:112–115CrossRef Plunk AA, Dunand DC (2017) Iron foams created by directional freeze casting of iron oxide, reduction and sintering. Mater Lett 191:112–115CrossRef
37.
go back to reference Park H, Lee S, Jo M, Park S, Kwon K, Shobana MK, Choe H (2017) Nanowire-like copper oxide grown on porous copper, a promising anode material for lithium-ion battery. J Korean Ceram Soc 54:438–442CrossRef Park H, Lee S, Jo M, Park S, Kwon K, Shobana MK, Choe H (2017) Nanowire-like copper oxide grown on porous copper, a promising anode material for lithium-ion battery. J Korean Ceram Soc 54:438–442CrossRef
38.
go back to reference Park H, Choi H, Nam K, Lee S, Um JH, Kim K, Kim JH, Yoon WS, Choe H (2017) Anode design based on microscale porous scaffolds for advanced lithium ion batteries. J Electron Mater 46:3789–3795CrossRef Park H, Choi H, Nam K, Lee S, Um JH, Kim K, Kim JH, Yoon WS, Choe H (2017) Anode design based on microscale porous scaffolds for advanced lithium ion batteries. J Electron Mater 46:3789–3795CrossRef
39.
go back to reference Park H, Um JH, Choi H, Yoon WS, Sung YE, Choe H (2017) Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries. Appl Surf Sci 399:132–138CrossRef Park H, Um JH, Choi H, Yoon WS, Sung YE, Choe H (2017) Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries. Appl Surf Sci 399:132–138CrossRef
40.
go back to reference Liu R, Xu T, Wang C (2016) A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceram Int 4:2907–2925CrossRef Liu R, Xu T, Wang C (2016) A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceram Int 4:2907–2925CrossRef
41.
go back to reference Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311:515–518CrossRef Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311:515–518CrossRef
42.
go back to reference Deville S (2008) Freeze-casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater 10:155–169CrossRef Deville S (2008) Freeze-casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater 10:155–169CrossRef
46.
go back to reference Long H, Shi T, Jiang S, Xi S, Chen R, Liu S, Liao G, Tang Z (2014) Synthesis of a nanowire self-assembled hierarchical ZnCo2O4 shell/Ni current collector core as binder-free anodes for high-performance Li-ion batteries. J Mater Chem A 2:3741–3748CrossRef Long H, Shi T, Jiang S, Xi S, Chen R, Liu S, Liao G, Tang Z (2014) Synthesis of a nanowire self-assembled hierarchical ZnCo2O4 shell/Ni current collector core as binder-free anodes for high-performance Li-ion batteries. J Mater Chem A 2:3741–3748CrossRef
47.
go back to reference Rajesh JA, Min BK, Kim JH, Kang SH, Kim H, Ahn KS (2017) Facile hydrothermal synthesis and electrochemical supercapacitor performance of hierarchical coral-like ZnCo2O4 nanowires. J Electroanal Chem 785:48–57CrossRef Rajesh JA, Min BK, Kim JH, Kang SH, Kim H, Ahn KS (2017) Facile hydrothermal synthesis and electrochemical supercapacitor performance of hierarchical coral-like ZnCo2O4 nanowires. J Electroanal Chem 785:48–57CrossRef
48.
go back to reference Chen R, Hu Y, Shen Z, Chen Y, He X, Zhang X, Zhang Y (2016) Controlled synthesis of carbon nanofibers anchored with Zn(x)Co(3-x)O4 nanocubes as binder-free anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 8:2591–2599CrossRef Chen R, Hu Y, Shen Z, Chen Y, He X, Zhang X, Zhang Y (2016) Controlled synthesis of carbon nanofibers anchored with Zn(x)Co(3-x)O4 nanocubes as binder-free anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 8:2591–2599CrossRef
49.
go back to reference Lu L, Gao YL, Yang ZZ, Wang C, Wang JG, Wang HY, Jiang QC (2018) Template-free synthesis of mesoporous nanoring-like Zn–Co mixed oxides with high lithium storage performance. J Power Sources 384:256–263CrossRef Lu L, Gao YL, Yang ZZ, Wang C, Wang JG, Wang HY, Jiang QC (2018) Template-free synthesis of mesoporous nanoring-like Zn–Co mixed oxides with high lithium storage performance. J Power Sources 384:256–263CrossRef
50.
go back to reference Carbone M (2018) Zn defective ZnCo2O4 nanorods as high capacity anode for lithium ion batteries. J Electroanal Chem 815:151–157CrossRef Carbone M (2018) Zn defective ZnCo2O4 nanorods as high capacity anode for lithium ion batteries. J Electroanal Chem 815:151–157CrossRef
51.
go back to reference Li J, Wang J, Wexler D, Shi D, Liang J, Liu H, Xiong S, Qian Y (2013) Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J Mater Chem A 1:15292–15299CrossRef Li J, Wang J, Wexler D, Shi D, Liang J, Liu H, Xiong S, Qian Y (2013) Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J Mater Chem A 1:15292–15299CrossRef
52.
go back to reference Yu J, Chen S, Hao W, Zhang S (2016) Fibrous-root-inspired design and lithium storage applications of a Co-Zn binary synergistic nanoarray system. ACS Nano 10:2500–2508CrossRef Yu J, Chen S, Hao W, Zhang S (2016) Fibrous-root-inspired design and lithium storage applications of a Co-Zn binary synergistic nanoarray system. ACS Nano 10:2500–2508CrossRef
53.
go back to reference Luo W, Hu X, Sun Y, Huang Y (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916–8921CrossRef Luo W, Hu X, Sun Y, Huang Y (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916–8921CrossRef
54.
go back to reference Song X, Ru Q, Mo Y, Guo L, Hu S, An B (2014) A novel porous coral-like Zn0.5Ni0.5Co2O4 as an anode material for lithium ion batteries with excellent rate performance. J Power Sources 269:795–803CrossRef Song X, Ru Q, Mo Y, Guo L, Hu S, An B (2014) A novel porous coral-like Zn0.5Ni0.5Co2O4 as an anode material for lithium ion batteries with excellent rate performance. J Power Sources 269:795–803CrossRef
55.
go back to reference Zhu D, Zheng F, Xu S, Zhang Y, Chen Q (2015) MOF-derived self-assembled ZnO/Co3O4 nanocomposite clusters as high-performance anodes for lithium-ion batteries. Dalton Trans 44:16946–16952CrossRef Zhu D, Zheng F, Xu S, Zhang Y, Chen Q (2015) MOF-derived self-assembled ZnO/Co3O4 nanocomposite clusters as high-performance anodes for lithium-ion batteries. Dalton Trans 44:16946–16952CrossRef
56.
go back to reference Liu X, Chen G, Guan H, Dong C, Xiao X, Wang Y (2016) Binder-free NiO@MnO2 core-shell electrode: rod-like NiO core prepared through corrosion by oxalic acid and enhanced pseudocapacitance with sphere-like MnO2 shell. Electrochim Acta 189:83–92CrossRef Liu X, Chen G, Guan H, Dong C, Xiao X, Wang Y (2016) Binder-free NiO@MnO2 core-shell electrode: rod-like NiO core prepared through corrosion by oxalic acid and enhanced pseudocapacitance with sphere-like MnO2 shell. Electrochim Acta 189:83–92CrossRef
57.
go back to reference Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011CrossRef Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011CrossRef
58.
go back to reference Huang L, Waller GH, Ding Y, Chen D, Ding D, Xi P, Wang ZL, Liu M (2015) Controllable interior structure of ZnCo2O4 microspheres for high-performance lithium-ion batteries. Nano Energy 11:64–70CrossRef Huang L, Waller GH, Ding Y, Chen D, Ding D, Xi P, Wang ZL, Liu M (2015) Controllable interior structure of ZnCo2O4 microspheres for high-performance lithium-ion batteries. Nano Energy 11:64–70CrossRef
60.
go back to reference Xie Q, Zeng D, Ma Y, Lin L, Wang L, Peng DL (2015) Synthesis of ZnO–ZnCo2O4 hybrid hollow microspheres with excellent lithium storage properties. Electrochim Acta 169:283–290CrossRef Xie Q, Zeng D, Ma Y, Lin L, Wang L, Peng DL (2015) Synthesis of ZnO–ZnCo2O4 hybrid hollow microspheres with excellent lithium storage properties. Electrochim Acta 169:283–290CrossRef
61.
go back to reference Yuan J, Chen C, Hao Y, Zhang X, Gao S, Agrawal R, Wang C, Xiong Z, Yu H, Xie Y (2017) A facile synthetic strategy to three-dimensional porous ZnCo2O4 thin films on Ni foams for high-performance lithium-ion battery anodes. J Electroanal Chem 787:158–162CrossRef Yuan J, Chen C, Hao Y, Zhang X, Gao S, Agrawal R, Wang C, Xiong Z, Yu H, Xie Y (2017) A facile synthetic strategy to three-dimensional porous ZnCo2O4 thin films on Ni foams for high-performance lithium-ion battery anodes. J Electroanal Chem 787:158–162CrossRef
62.
go back to reference Huang G, Zhang FF, Du XC, Qin YL, Yin DM, Wang LM (2015) Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9:1592–1599CrossRef Huang G, Zhang FF, Du XC, Qin YL, Yin DM, Wang LM (2015) Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9:1592–1599CrossRef
63.
go back to reference Shao JX, Feng JH, Zhou H, Yuan AH (2019) Graphene aerogel encapsulated Fe-Co oxide nanocubes derived from Prussian blue analogue as integrated anode with enhanced Li-ion storage properties. Appl Surf Sci 471:745–752CrossRef Shao JX, Feng JH, Zhou H, Yuan AH (2019) Graphene aerogel encapsulated Fe-Co oxide nanocubes derived from Prussian blue analogue as integrated anode with enhanced Li-ion storage properties. Appl Surf Sci 471:745–752CrossRef
64.
go back to reference Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4:805–815CrossRef Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4:805–815CrossRef
65.
go back to reference Feng Y, Zou R, Xia D, Liu L, Wang X (2013) Tailoring CoO–ZnO nanorod and nanotube arrays for Li-ion battery anode materials. J Mater Chem A 1:9654–9658CrossRef Feng Y, Zou R, Xia D, Liu L, Wang X (2013) Tailoring CoO–ZnO nanorod and nanotube arrays for Li-ion battery anode materials. J Mater Chem A 1:9654–9658CrossRef
67.
go back to reference Huang C, Grant PS (2018) Coral-like directional porosity lithium ion battery cathodes by ice templating. J Mater Chem A 6:14689–14699CrossRef Huang C, Grant PS (2018) Coral-like directional porosity lithium ion battery cathodes by ice templating. J Mater Chem A 6:14689–14699CrossRef
68.
go back to reference Song X, Ru Q, Mo Y, Hu S, An B (2014) A novel fiber bundle structure ZnCo2O4 as a high capacity anode material for lithium-ion battery. J Alloys Compd 606:219–225CrossRef Song X, Ru Q, Mo Y, Hu S, An B (2014) A novel fiber bundle structure ZnCo2O4 as a high capacity anode material for lithium-ion battery. J Alloys Compd 606:219–225CrossRef
69.
go back to reference Ma L, Ye J, Chen W, Chen D, Yang Lee J (2014) Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS2/graphene hybrid with enhanced lithium storage performance. Nano Energy 10:144–152CrossRef Ma L, Ye J, Chen W, Chen D, Yang Lee J (2014) Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS2/graphene hybrid with enhanced lithium storage performance. Nano Energy 10:144–152CrossRef
70.
go back to reference Zuo X, Chang K, Zhao J, Xie Z, Tang H, Li B, Chang Z (2016) Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J Mater Chem A 4:51–58CrossRef Zuo X, Chang K, Zhao J, Xie Z, Tang H, Li B, Chang Z (2016) Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J Mater Chem A 4:51–58CrossRef
71.
go back to reference Liu T, Wang W, Yi M, Chen Q, Xu C, Cai D, Zhan H (2018) Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries. Chem Eng J 354:454–462CrossRef Liu T, Wang W, Yi M, Chen Q, Xu C, Cai D, Zhan H (2018) Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries. Chem Eng J 354:454–462CrossRef
72.
go back to reference Wang X, Chen Q, Zhao P, Wang M (2018) Synthesis of interconnected mesoporous ZnCo2O4 nanosheets on a 3D graphene foam as a binder-free anode for high-performance Li-ion batteries. RSC Adv 8:33717–33727CrossRef Wang X, Chen Q, Zhao P, Wang M (2018) Synthesis of interconnected mesoporous ZnCo2O4 nanosheets on a 3D graphene foam as a binder-free anode for high-performance Li-ion batteries. RSC Adv 8:33717–33727CrossRef
73.
go back to reference Mohamed SG, Hung TF, Chen CJ, Chen CK, Hu SF, Liu RS, Wang KC, Xing XK, Liu HM, Liu AS, Hsieh MH, Lee BJ (2013) Flower-like ZnCo2O4 nanowires: toward a high-performance anode material for Li-ion batteries. RSC Adv 3:20143–20149CrossRef Mohamed SG, Hung TF, Chen CJ, Chen CK, Hu SF, Liu RS, Wang KC, Xing XK, Liu HM, Liu AS, Hsieh MH, Lee BJ (2013) Flower-like ZnCo2O4 nanowires: toward a high-performance anode material for Li-ion batteries. RSC Adv 3:20143–20149CrossRef
74.
go back to reference Hou X, Bai S, Xue S, Shang X, Fu Y, He D (2017) Wrinkled-paper-like ZnCo2O4 nanoflakes as a superior anode material for ultrahigh-rate lithium-ion batteries. J Alloys Compd 711:592–597CrossRef Hou X, Bai S, Xue S, Shang X, Fu Y, He D (2017) Wrinkled-paper-like ZnCo2O4 nanoflakes as a superior anode material for ultrahigh-rate lithium-ion batteries. J Alloys Compd 711:592–597CrossRef
75.
go back to reference Chen H, Zhang Q, Wang J, Wang Q, Zhou X, Li X, Yang Y, Zhang K (2014) Mesoporous ZnCo2O4 microspheres composed of ultrathin nanosheets cross-linked with metallic NiSi x nanowires on Ni foam as anodes for lithium ion batteries. Nano Energy 10:245–258CrossRef Chen H, Zhang Q, Wang J, Wang Q, Zhou X, Li X, Yang Y, Zhang K (2014) Mesoporous ZnCo2O4 microspheres composed of ultrathin nanosheets cross-linked with metallic NiSi x nanowires on Ni foam as anodes for lithium ion batteries. Nano Energy 10:245–258CrossRef
Metadata
Title
3D highly oriented metal foam: a competitive self-supporting anode for high-performance lithium-ion batteries
Authors
Hairong Mao
Ping Shen
Guangyu Yang
Liang Zhao
Xiaoming Qiu
Huiyuan Wang
Qichuan Jiang
Publication date
28-04-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 25/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04702-7

Other articles of this Issue 25/2020

Journal of Materials Science 25/2020 Go to the issue

Premium Partners