Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 3-4/2020

28-11-2019 | ORIGINAL ARTICLE

RETRACTED ARTICLE:3D printing of surface characterisation and finite element analysis improvement of PEEK-HAP-GO in bone implant

Authors: Bankole I. Oladapo, S. Abolfazl Zahedi, Seng Chong, Francis T. Omigbodun, Idowu O. Malachi

Published in: The International Journal of Advanced Manufacturing Technology | Issue 3-4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Research and development of polyetheretherketone (PEEK) composites with high thermal conductivities and ideal thermal stabilities have become one of the hot topics in composites. However, not all PEEK composites have the necessary characteristics adequate fracture toughness to resist forces and crack propagation, with an improved mechanical and structural properties. This research evaluates a novel computational surface characterisation and finite element analysis (FEA) of polyetheretherketone and hydroxyapatite graphene oxide (PEEK-HAP-GO) in the process of 3D printing to improve fracture toughness to resist forces and crack propagation. It also focuses on increasing the hydrophilicity, surface roughness, and coating osteoconductive of PEEK-HAP-GO for the bone implant. Compression and tensile tests were performed to investigate the mechanical properties of the PEEK-HAP-GO structure. The addition of calcium phosphate and the incorporation of porosity in PEEK-HAP-GO has been identified as an effective way to improve the osseointegration of bone-implant interfaces of PEEK-HAP-GO. The further analytical structure of the particle was performed, evaluating the surface luminance structure and the profile structure of composite material in 3D printing, analysing the profile curve of the nanostructure from the scanning electron microscope (SEM). The results of the uniaxial compression tests in new PEEK-HAP-GO biodegradable materials show good compressive strength suitable for loading applications. It shows melt-blending with bioactive nanoparticles can be used to produce bioactive nanocomposites like HAP-GO and is used to modify the surface structure of PEEK implants in order to make it more bioactive.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ma R, Tang S, Tan H, Lin W, Wang Y, Wei J, Zhao L, Tang T (2014) Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material. Int J Nanomedicine 9:3949–3961 Ma R, Tang S, Tan H, Lin W, Wang Y, Wei J, Zhao L, Tang T (2014) Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material. Int J Nanomedicine 9:3949–3961
2.
go back to reference Deng Y, Liu X, Xu A, Wang L, Luo Z, Zheng Y, Deng F, Wei J, Tang Z, Wei S (2015) Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite. Int J Nanomedicine 10:1425–1447 Deng Y, Liu X, Xu A, Wang L, Luo Z, Zheng Y, Deng F, Wei J, Tang Z, Wei S (2015) Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite. Int J Nanomedicine 10:1425–1447
3.
go back to reference Converse GL, Conrad TL, Roeder RK (2009) Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds. J Mech Behav Biomed Mater 2:627–635CrossRef Converse GL, Conrad TL, Roeder RK (2009) Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds. J Mech Behav Biomed Mater 2:627–635CrossRef
4.
go back to reference Oladapo BI, Zahedi SA, Vahidnia F, Ikumapayi OM, Farooq MU Three-dimensional finite element analysis of a porcelain crowned tooth. Beni-Suef Univ J Basic Appl Sci 7(4):461–464 Oladapo BI, Zahedi SA, Vahidnia F, Ikumapayi OM, Farooq MU Three-dimensional finite element analysis of a porcelain crowned tooth. Beni-Suef Univ J Basic Appl Sci 7(4):461–464
5.
go back to reference Abu Bakar MS, Cheang P, Khor KA (2003a) Mech. propt. of injection molded HA-PEEK biocompos. Compos Sci Technol 63:421–425CrossRef Abu Bakar MS, Cheang P, Khor KA (2003a) Mech. propt. of injection molded HA-PEEK biocompos. Compos Sci Technol 63:421–425CrossRef
6.
go back to reference Peng S, Feng P, Wu P, Huang W, Yang Y, Wang G, Gao C, Shuai C (2017) Graphene oxide as an interface phase between polyetheretherketone and hydroxyapatite for tissue engineering scaffolds. Sci Rep 7, Article number: 46604 Peng S, Feng P, Wu P, Huang W, Yang Y, Wang G, Gao C, Shuai C (2017) Graphene oxide as an interface phase between polyetheretherketone and hydroxyapatite for tissue engineering scaffolds. Sci Rep 7, Article number: 46604
7.
go back to reference Abu Bakar, M.S.; Cheang, P.; Khor, K.A. Tensile properties and microstructural analysis of spheroidizedhydroxyapatite–poly (etheretherketone) biocomposites.Mater. Sci. Eng. A2003,345, 55–63. Abu Bakar, M.S.; Cheang, P.; Khor, K.A. Tensile properties and microstructural analysis of spheroidizedhydroxyapatite–poly (etheretherketone) biocomposites.Mater. Sci. Eng. A2003,345, 55–63.
8.
go back to reference Daniyan IA, Adeodu AO, Oladapo BI, Daniyan OL, Ajetomobi OR Development of a reconfigurable fixture for low weight machining operations. Cogent Eng 6(1):1579455 Daniyan IA, Adeodu AO, Oladapo BI, Daniyan OL, Ajetomobi OR Development of a reconfigurable fixture for low weight machining operations. Cogent Eng 6(1):1579455
9.
go back to reference Converse GL, Yue W, Roeder RK (2007) Processing and tensile propt. of HA-whisker-reinforced PEEK. Biomaterials 28:927–935CrossRef Converse GL, Yue W, Roeder RK (2007) Processing and tensile propt. of HA-whisker-reinforced PEEK. Biomaterials 28:927–935CrossRef
10.
go back to reference S. Li, SA. Zahedi, V. Silberschmidt, “Numerical Simulation of Bone Cutting: Hybrid SPH-FE Approach, Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes (2017), 187–201 S. Li, SA. Zahedi, V. Silberschmidt, “Numerical Simulation of Bone Cutting: Hybrid SPH-FE Approach, Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes (2017), 187–201
11.
go back to reference Oladapo BI, Vincent BA, Oke AO, Agbor EA Design and finite element analysis on car seat height screw adjuster using autodesk inventor. Int J Sci Res Eng Stud (IJSRES) 2(8) Oladapo BI, Vincent BA, Oke AO, Agbor EA Design and finite element analysis on car seat height screw adjuster using autodesk inventor. Int J Sci Res Eng Stud (IJSRES) 2(8)
12.
go back to reference Liravi F, Toyserkani E (2017) A hybrid additive manufacturing method for the fabrication of silicone bio-structures: 3D printing optimization and surface characterization. Mater Des 138:46–61CrossRef Liravi F, Toyserkani E (2017) A hybrid additive manufacturing method for the fabrication of silicone bio-structures: 3D printing optimization and surface characterization. Mater Des 138:46–61CrossRef
13.
go back to reference Jaekel DJ, Macdonald DW, Kurtz SM (2011) Characterization of PEEK Bioms using the small punch test. JMBBM 4:1275–1282 Jaekel DJ, Macdonald DW, Kurtz SM (2011) Characterization of PEEK Bioms using the small punch test. JMBBM 4:1275–1282
14.
go back to reference Jarman-Smith M et al (2012) Chapter 12 – porosity in PEEK. In: Kurtz SM (ed) PEEK Bioms handbook. WAP, Oxford, pp 181–199CrossRef Jarman-Smith M et al (2012) Chapter 12 – porosity in PEEK. In: Kurtz SM (ed) PEEK Bioms handbook. WAP, Oxford, pp 181–199CrossRef
15.
go back to reference Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28:4845–4869CrossRef Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28:4845–4869CrossRef
16.
go back to reference Lovald S, Kurtz SM (2012) Chapter 15 – applications of PEEK in trauma, arthroscopy, and cranial defect repair. In: Kurtz SM (ed) PEEK Biomaterials handbook. WAP, Oxford, pp 243–260CrossRef Lovald S, Kurtz SM (2012) Chapter 15 – applications of PEEK in trauma, arthroscopy, and cranial defect repair. In: Kurtz SM (ed) PEEK Biomaterials handbook. WAP, Oxford, pp 243–260CrossRef
17.
go back to reference Rae PJ, Brown EN, Orler EB (2007) The Mech. propt. of PEEK with emphasis on the large compr strain response. Polymer 48:598–615CrossRef Rae PJ, Brown EN, Orler EB (2007) The Mech. propt. of PEEK with emphasis on the large compr strain response. Polymer 48:598–615CrossRef
18.
go back to reference Schmidt M, Pohle D, Rechtenwald T (2007) SLS of PEEK. CIRP Ann Manuf Technol 56:205–208CrossRef Schmidt M, Pohle D, Rechtenwald T (2007) SLS of PEEK. CIRP Ann Manuf Technol 56:205–208CrossRef
20.
go back to reference Kurtz SM (2012) Chapter 2-syntis and proc PEEK for surgical implant. In: PEEK biomaterials handbook. WAP, Oxford, p 9CrossRef Kurtz SM (2012) Chapter 2-syntis and proc PEEK for surgical implant. In: PEEK biomaterials handbook. WAP, Oxford, p 9CrossRef
21.
go back to reference Green SM, Schlegel J (2001) A PEEK Biom for use in medical implant. Applications RTLSB, U.K., pp 1–7 Green SM, Schlegel J (2001) A PEEK Biom for use in medical implant. Applications RTLSB, U.K., pp 1–7
22.
go back to reference Ladapo BI (2015) Computer aided drafting and construction of standard drafting table for college of engineering studio in afe babalola university. Int J Sci Eng Res 6(8) Ladapo BI (2015) Computer aided drafting and construction of standard drafting table for college of engineering studio in afe babalola university. Int J Sci Eng Res 6(8)
23.
go back to reference Melkerson M, Kirkpatrick J, Griffith S (2003) Spinal implant: are we evaluating them appropriately? ASTM Melkerson M, Kirkpatrick J, Griffith S (2003) Spinal implant: are we evaluating them appropriately? ASTM
24.
go back to reference Chen RK, Lo TT, Chen L, Shih AJ (2015) Nano-CT charact. of struct. voids and air bubbles in FDM for AM. In: ASME, vol 1. IMSEC Processing, 2015 Chen RK, Lo TT, Chen L, Shih AJ (2015) Nano-CT charact. of struct. voids and air bubbles in FDM for AM. In: ASME, vol 1. IMSEC Processing, 2015
26.
go back to reference Singha S, Singh R (2016) Development of functionally graded material by fused deposition modelling assisted investment casting. J Manuf Process 24:38–45CrossRef Singha S, Singh R (2016) Development of functionally graded material by fused deposition modelling assisted investment casting. J Manuf Process 24:38–45CrossRef
27.
go back to reference Balogun VA, Oladapo BI Electrical energy demand modeling of 3D printing technology for sustainable manufacture. Int J Eng 29(7):1–8 Balogun VA, Oladapo BI Electrical energy demand modeling of 3D printing technology for sustainable manufacture. Int J Eng 29(7):1–8
28.
go back to reference Sung-Hoon A, Michael M, Dan O, Shad R, Paul KW (2002) Anisotropic material propt. of FDM ABS. Rapid Prototyp J 8:248CrossRef Sung-Hoon A, Michael M, Dan O, Shad R, Paul KW (2002) Anisotropic material propt. of FDM ABS. Rapid Prototyp J 8:248CrossRef
29.
go back to reference Sobieraj MC, Rimnac CM (2012) Chapter 5-fracture, fatigue, and notch behavior of PEEK. In: Kurtz SM (ed) PEEK Biomaterials Handbook. WAP, Oxford, p 61CrossRef Sobieraj MC, Rimnac CM (2012) Chapter 5-fracture, fatigue, and notch behavior of PEEK. In: Kurtz SM (ed) PEEK Biomaterials Handbook. WAP, Oxford, p 61CrossRef
30.
go back to reference Jaekel D, Medel FJ, Kurtz SM (2019) Validation of Crystallinity Measurements of Medical Grade PEEK Using Specular Reflectance FTIR-microscopy. ANTEC 5:2511–2516 Jaekel D, Medel FJ, Kurtz SM (2019) Validation of Crystallinity Measurements of Medical Grade PEEK Using Specular Reflectance FTIR-microscopy. ANTEC 5:2511–2516
31.
go back to reference Oladapo BI, Adeoye AOM, Ismail M Analytical optimization of a nanoparticle of microstructural fused deposition of resins for additive manufacturing. Compos B Eng 150:248–254 Oladapo BI, Adeoye AOM, Ismail M Analytical optimization of a nanoparticle of microstructural fused deposition of resins for additive manufacturing. Compos B Eng 150:248–254
32.
go back to reference Pan Y, Shen Q, Chen Y (2013) Fabric and charact of functional gradient HA reinforced PEEK biocompos. Micro Nano Lett 8:357–361CrossRef Pan Y, Shen Q, Chen Y (2013) Fabric and charact of functional gradient HA reinforced PEEK biocompos. Micro Nano Lett 8:357–361CrossRef
33.
go back to reference Roeder RK, Conrad TL (2012) Chapter 11—Bioa. PEEK Compos. In: PEEK biomaterials handbook. WAP, Oxford, pp 163–179CrossRef Roeder RK, Conrad TL (2012) Chapter 11—Bioa. PEEK Compos. In: PEEK biomaterials handbook. WAP, Oxford, pp 163–179CrossRef
34.
go back to reference Jarman-Smith M, Brady M, Kurtz SM, Cordaro NM, Walsh WR (2012) Chapter 12—Porosity in PEEK. In: PEEK Bioms Handbook. WAP, Oxford, pp 181–199CrossRef Jarman-Smith M, Brady M, Kurtz SM, Cordaro NM, Walsh WR (2012) Chapter 12—Porosity in PEEK. In: PEEK Bioms Handbook. WAP, Oxford, pp 181–199CrossRef
35.
go back to reference Schmidt M, Pohle D, Rechtenwald T (2007) SLS of PEEK. CIRP Annals – MT 56:205–208CrossRef Schmidt M, Pohle D, Rechtenwald T (2007) SLS of PEEK. CIRP Annals – MT 56:205–208CrossRef
36.
go back to reference Oladapo BI, Zahedi SA, Adeoye AOM 3D printing of bone scaffolds with hybrid biomaterials. Compos B Eng 158:428–436 Oladapo BI, Zahedi SA, Adeoye AOM 3D printing of bone scaffolds with hybrid biomaterials. Compos B Eng 158:428–436
37.
go back to reference Rathke A, Balz U, Muche R, Haller B (2016) Effects of self-curing activator and curing protocol on the bond strength of composite core buildups. J Adhesive Dent 14:39–46 Rathke A, Balz U, Muche R, Haller B (2016) Effects of self-curing activator and curing protocol on the bond strength of composite core buildups. J Adhesive Dent 14:39–46
38.
go back to reference Ijagbemi CO, Oladapo BI, Campbell HM, Ijagbemi CO Design and simulation of fatigue analysis for a vehicle suspension system (VSS) and its effect on global warming. Procedia Eng 159:124–132 Ijagbemi CO, Oladapo BI, Campbell HM, Ijagbemi CO Design and simulation of fatigue analysis for a vehicle suspension system (VSS) and its effect on global warming. Procedia Eng 159:124–132
39.
go back to reference Sithiprumnea D, Luca F, Alessandro P (2016) Fused deposition modelling with ABS–graphene nanocomposites. Compos Part A 85:181–191CrossRef Sithiprumnea D, Luca F, Alessandro P (2016) Fused deposition modelling with ABS–graphene nanocomposites. Compos Part A 85:181–191CrossRef
40.
go back to reference Oladapo BI, Zahedi SA, Omigbodun FT, Oshin EA, Adebiyi VA, Malachi OB (2019) Microstructural evaluation of aluminium alloy A365 T6 in machining operation. J Mater Res Technol 8(3):3213–3222CrossRef Oladapo BI, Zahedi SA, Omigbodun FT, Oshin EA, Adebiyi VA, Malachi OB (2019) Microstructural evaluation of aluminium alloy A365 T6 in machining operation. J Mater Res Technol 8(3):3213–3222CrossRef
Metadata
Title
RETRACTED ARTICLE:3D printing of surface characterisation and finite element analysis improvement of PEEK-HAP-GO in bone implant
Authors
Bankole I. Oladapo
S. Abolfazl Zahedi
Seng Chong
Francis T. Omigbodun
Idowu O. Malachi
Publication date
28-11-2019
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 3-4/2020
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04618-w

Other articles of this Issue 3-4/2020

The International Journal of Advanced Manufacturing Technology 3-4/2020 Go to the issue

Premium Partners