Skip to main content
Top
Published in: Wireless Personal Communications 3/2016

03-08-2016

A Blind Recognition Algorithm for Real Orthogonal STBC MC-CDMA Underdetermined Systems Based on LPCA and SCA

Authors: Bui Quang Chung, Zhang Tian Qi, Alina Labitzke

Published in: Wireless Personal Communications | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper proposes a blind recognition algorithm for real orthogonal space–time block code multi-carrier code division multiple access (OSTBC MC-CDMA) underdetermined systems based on Laplacian potential clustering algorithm (LPCA) and sparse component analysis. In our work, the received signal first has been constructed to satisfy the instantaneous underdetermined model, where the mixing matrix (virtual channel matrix) includes the information of space–time block code. The virtual channel matrix is then can be separated by using the LPCA. We show that, for OSTBC, the correlation matrix of virtual channel matrix is a diagonal matrix, while with non-OSTBC (NOSTBC) signal, such correlation matrix of virtual channel matrix was not. According to this property, two characteristic parameters of correlation matrix of virtual channel matrix are extracted, such as sparsity and energy ratio of non-main and main diagonal elements. In recognition process, the energy ratio will be used in pre-decision step, thus it avoids the influence of noise and making sure that the correlation matrix of virtual channel matrix is a diagonal matrix for OSTBC. The last decision will be done through comparing sparsity parameter with the number of transmitted symbols, where the sparsity parameter of OSTBC will be equal the number of transmitted symbols and the such parameter of NOSTBC will not. Simulation results demonstrate the effectiveness of the proposed algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Jafarkhani, H. (2013). Space time coding. Theory and practice. Cambridge: Cambridge University Press.MATH Jafarkhani, H. (2013). Space time coding. Theory and practice. Cambridge: Cambridge University Press.MATH
2.
go back to reference Cho, Y. S., Kim, J., Yang, W. Y., et al. (2013). MIMO-OFDM wireless communications with MATLAB. Singapore: Wiley. Cho, Y. S., Kim, J., Yang, W. Y., et al. (2013). MIMO-OFDM wireless communications with MATLAB. Singapore: Wiley.
3.
go back to reference Adachi, F., Gang, G., Rakaoka, S., et al. (2005). Broadband CDMA technique. IEEE Wireless Communications, 12, 8–18.CrossRef Adachi, F., Gang, G., Rakaoka, S., et al. (2005). Broadband CDMA technique. IEEE Wireless Communications, 12, 8–18.CrossRef
4.
go back to reference Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45, 1456–1467.MathSciNetCrossRefMATH Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45, 1456–1467.MathSciNetCrossRefMATH
5.
go back to reference Young, M. D., Health, R., & Evans, B. L. (2008). Using higher order cyclostationarity to indentify space-time block codes. In IEEE global teleommunications conference (pp. 3370–3374). New Orleans, Louisiana, USA. Young, M. D., Health, R., & Evans, B. L. (2008). Using higher order cyclostationarity to indentify space-time block codes. In IEEE global teleommunications conference (pp. 3370–3374). New Orleans, Louisiana, USA.
6.
go back to reference Shi, M., Bar-ness, Y., & Su, W. (2007). STC and BLAST MIMO modulation recognition. In IEEE global teleommunications conference (pp. 3334–3339). Washington, DC, USA. Shi, M., Bar-ness, Y., & Su, W. (2007). STC and BLAST MIMO modulation recognition. In IEEE global teleommunications conference (pp. 3334–3339). Washington, DC, USA.
7.
go back to reference Choqueuse, V., Yao, K., Collin, L., et al. (2008). Hierarchical space-time block code recognition using correlation matrices. IEEE Transactions on Wireless Communication, 7, 3526–3534.CrossRef Choqueuse, V., Yao, K., Collin, L., et al. (2008). Hierarchical space-time block code recognition using correlation matrices. IEEE Transactions on Wireless Communication, 7, 3526–3534.CrossRef
8.
go back to reference Choqueuse, V., Yao, K., Collin, L., et al. (2008). Blind recognition of linear space-time block codes. In ICASSP’2008, pp. 2833–2836. Las Vegas, Nevada, USA. Choqueuse, V., Yao, K., Collin, L., et al. (2008). Blind recognition of linear space-time block codes. In ICASSP’2008, pp. 2833–2836. Las Vegas, Nevada, USA.
9.
go back to reference Choqueuse, V., Yao, K., Collin, L., et al. (2010). Blind recognition of linear space-time block codes: A likelihood-based approach. IEEE Transactions on Signal Processing, 58, 1290–1299.MathSciNetCrossRef Choqueuse, V., Yao, K., Collin, L., et al. (2010). Blind recognition of linear space-time block codes: A likelihood-based approach. IEEE Transactions on Signal Processing, 58, 1290–1299.MathSciNetCrossRef
10.
go back to reference Gribonval, R., & Lesage, S. (2006). A survey of sparse component analysis for blind source separation: Principles, perspectives, and new challenges. In Proceedings ESANN’06 (pp. 323–330). Gribonval, R., & Lesage, S. (2006). A survey of sparse component analysis for blind source separation: Principles, perspectives, and new challenges. In Proceedings ESANN’06 (pp. 323–330).
11.
go back to reference Bofill, P., & Zibulevsky, M. (2001). Underdetermined blind source separation using sparse representations. Signal Processing, 81, 2353–2362.CrossRefMATH Bofill, P., & Zibulevsky, M. (2001). Underdetermined blind source separation using sparse representations. Signal Processing, 81, 2353–2362.CrossRefMATH
12.
go back to reference Davies, M., & Mitianoudis, N. (2004). Simple mixture model for sparse overcomplete ICA. IEE Proceedings-Vision, Image and Signal Processing, 151, 35–43.CrossRef Davies, M., & Mitianoudis, N. (2004). Simple mixture model for sparse overcomplete ICA. IEE Proceedings-Vision, Image and Signal Processing, 151, 35–43.CrossRef
13.
go back to reference Babaie-Zadeh, M., Jutten, C., & Mansour, A. (2006). Sparse ICA via cluster-wise PCA. Neural computing, 69, 1458–1466. Babaie-Zadeh, M., Jutten, C., & Mansour, A. (2006). Sparse ICA via cluster-wise PCA. Neural computing, 69, 1458–1466.
14.
go back to reference Li, Y. Q., Amari, S., Cichocki, A., et al. (2006). Underdetermined blind source separation based on sparse representation. IEEE Transactions on Signal Processing, 54, 423–437.CrossRef Li, Y. Q., Amari, S., Cichocki, A., et al. (2006). Underdetermined blind source separation based on sparse representation. IEEE Transactions on Signal Processing, 54, 423–437.CrossRef
15.
go back to reference Mitianoudis, N., & Stathaki, T. (2005). Overcomplete source separation using laplacian mixture models. IEEE Signal Processing Letters, 12, 277–280.CrossRef Mitianoudis, N., & Stathaki, T. (2005). Overcomplete source separation using laplacian mixture models. IEEE Signal Processing Letters, 12, 277–280.CrossRef
16.
go back to reference Prieto, A., Prieto, B., Puntonet, C. G., et al. (1999). Geometric separation of linear mixtures of sources: Application to speech signals. In Proceedings of ICA’99, pp. 295–300. Prieto, A., Prieto, B., Puntonet, C. G., et al. (1999). Geometric separation of linear mixtures of sources: Application to speech signals. In Proceedings of ICA’99, pp. 295–300.
17.
go back to reference Theis, F. J., Lang, W. E., & Puntonet, C. G. (2004). A geometric algorithm for overcomplete linear ICA. Neural computing, 56, 381–398. Theis, F. J., Lang, W. E., & Puntonet, C. G. (2004). A geometric algorithm for overcomplete linear ICA. Neural computing, 56, 381–398.
18.
go back to reference Zhang, W., Liu, J., Sun, J., et al. (2007). A new two-stage approach to underdetermined blind source separation using sparse representation. In Proceedings of ICASSP’07 (pp. 953–956). Zhang, W., Liu, J., Sun, J., et al. (2007). A new two-stage approach to underdetermined blind source separation using sparse representation. In Proceedings of ICASSP’07 (pp. 953–956).
19.
go back to reference Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 4–37.CrossRef Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 4–37.CrossRef
20.
go back to reference Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New York: Wiley.CrossRefMATH Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New York: Wiley.CrossRefMATH
21.
go back to reference Mclachlan, G. J., & Krishnan, T. (1987). The em algorithm and extensions. Hoboken, NJ: Wiley.MATH Mclachlan, G. J., & Krishnan, T. (1987). The em algorithm and extensions. Hoboken, NJ: Wiley.MATH
22.
go back to reference Lippmann, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 42, 4–22.CrossRef Lippmann, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 42, 4–22.CrossRef
23.
go back to reference Tsao, E. C. K., Bezdek, J. C., & Pal, N. R. (1994). Fuzzy Kohonen clustering net works. Patten Recognition, 27, 757–764.CrossRef Tsao, E. C. K., Bezdek, J. C., & Pal, N. R. (1994). Fuzzy Kohonen clustering net works. Patten Recognition, 27, 757–764.CrossRef
24.
go back to reference Bezdek, J. C. (1981). Patten recognition with fuzzy objective function algorithm. New York: Plenum Press.CrossRef Bezdek, J. C. (1981). Patten recognition with fuzzy objective function algorithm. New York: Plenum Press.CrossRef
25.
go back to reference Frigui, H., & Krishnapuram, R. (1999). A robust competitive clustering algorithm with application in computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 450–465.CrossRef Frigui, H., & Krishnapuram, R. (1999). A robust competitive clustering algorithm with application in computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 450–465.CrossRef
26.
go back to reference Stewart, C. V. (1995). MINPRAN: A new robust estimator for computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 925–938.CrossRef Stewart, C. V. (1995). MINPRAN: A new robust estimator for computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 925–938.CrossRef
27.
go back to reference Dave, R. N., & Krishnapuram, R. (1997). Robust clustering methods: A unified view. IEEE Transactions on Fuzzy Systems, 5, 270–293.CrossRef Dave, R. N., & Krishnapuram, R. (1997). Robust clustering methods: A unified view. IEEE Transactions on Fuzzy Systems, 5, 270–293.CrossRef
28.
go back to reference Krishnapuram, R., Frigui, H., & Nsraoui, O. (1995). Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. IEEE Transactions on Fuzzy Systems, 3, 29–60.CrossRef Krishnapuram, R., Frigui, H., & Nsraoui, O. (1995). Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. IEEE Transactions on Fuzzy Systems, 3, 29–60.CrossRef
29.
go back to reference Wu, K. L., & Yang, M. S. (2002). Alternative c-means clustering algorithms. Patten Recognition, 35, 2267–2278.CrossRefMATH Wu, K. L., & Yang, M. S. (2002). Alternative c-means clustering algorithms. Patten Recognition, 35, 2267–2278.CrossRefMATH
30.
go back to reference Pal, N. R., & Bezdek, J. C. (1995). On cluster validity for c-means model. IEEE Transactions on Fuzzy Systems, 3, 370–379.CrossRef Pal, N. R., & Bezdek, J. C. (1995). On cluster validity for c-means model. IEEE Transactions on Fuzzy Systems, 3, 370–379.CrossRef
31.
go back to reference Gustafson, E. E., & Kessel, W. C. (1979). Fuzzy clustering with a fuzzy matrix. In Proceedings of IEEE conference on design and control (pp. 761–766). San Diego, CA. Gustafson, E. E., & Kessel, W. C. (1979). Fuzzy clustering with a fuzzy matrix. In Proceedings of IEEE conference on design and control (pp. 761–766). San Diego, CA.
32.
go back to reference Gath, I., & Geva, A. B. (1989). Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 773–781.CrossRefMATH Gath, I., & Geva, A. B. (1989). Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 773–781.CrossRefMATH
33.
go back to reference Stefan, K. (1998). Multi carrier CDMA mobile radio systems-analysis and optimization of detection, decoding and channel estimation. Series 10. Düsseldorf: VDI-Verlag, Fortschritt-Berichte VDL. Stefan, K. (1998). Multi carrier CDMA mobile radio systems-analysis and optimization of detection, decoding and channel estimation. Series 10. Düsseldorf: VDI-Verlag, Fortschritt-Berichte VDL.
34.
go back to reference Ju, L., Antonio, I. P., & Miguel, A. L. (2003). Blind separation of OSTBC signals using ICA neural networks. In IEEE International Symposium on Signal Processing and Information Technology, pp. 502–505. Darmstadt, Germany. Ju, L., Antonio, I. P., & Miguel, A. L. (2003). Blind separation of OSTBC signals using ICA neural networks. In IEEE International Symposium on Signal Processing and Information Technology, pp. 502–505. Darmstadt, Germany.
35.
go back to reference Wax, M., & Kailath, T. (1985). Detection of signals by Information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33, 387–392.MathSciNetCrossRef Wax, M., & Kailath, T. (1985). Detection of signals by Information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33, 387–392.MathSciNetCrossRef
36.
go back to reference Zibulevsky, M., & Pearlmutter, B. A. (2001). Blind source separation by sparse decomposition in a signal dictionary. Neural Computer, 13, 863–882.CrossRefMATH Zibulevsky, M., & Pearlmutter, B. A. (2001). Blind source separation by sparse decomposition in a signal dictionary. Neural Computer, 13, 863–882.CrossRefMATH
37.
go back to reference Yager, R. R., & Filev, D. P. (1994). Approximate clustering via the mountain method. IEEE Transactions on Systems, Man and Cybernetics, 24, 1279–1284.CrossRef Yager, R. R., & Filev, D. P. (1994). Approximate clustering via the mountain method. IEEE Transactions on Systems, Man and Cybernetics, 24, 1279–1284.CrossRef
38.
go back to reference Mitianoudi, N. S., & Stathaki, T. (2007). Batch and online underdetermined source separation using Laplacian mixture models. IEEE Transactions on Audio, Speech and Language Processing, 15, 1818–1832.CrossRef Mitianoudi, N. S., & Stathaki, T. (2007). Batch and online underdetermined source separation using Laplacian mixture models. IEEE Transactions on Audio, Speech and Language Processing, 15, 1818–1832.CrossRef
Metadata
Title
A Blind Recognition Algorithm for Real Orthogonal STBC MC-CDMA Underdetermined Systems Based on LPCA and SCA
Authors
Bui Quang Chung
Zhang Tian Qi
Alina Labitzke
Publication date
03-08-2016
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2016
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3543-y

Other articles of this Issue 3/2016

Wireless Personal Communications 3/2016 Go to the issue