Skip to main content
Top

2016 | OriginalPaper | Chapter

A Built-in Self-repair Circuit for Restructuring Mesh-Connected Processor Arrays by Direct Spare Replacement

Authors : Itsuo Takanami, Tadayoshi Horita, Masakazu Akiba, Mina Terauchi, Tsuneo Kanno

Published in: Transactions on Computational Science XXVII

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a digital circuit for restructuring a mesh-connected processor array with faulty processing elements which are directly replaced by spare processing elements located at two orthogonal sides of the array. First, the spare assignment problem is formalized as a matching problem in graph theory. Using the result, we present an algorithm for restructuring the array in a convenient form for finding a matching by a digital circuit. Second, the digital circuit which exactly realizes the algorithm is given. The circuit can be embedded in a target processor array to restructure very quickly the array with faulty processing elements without the aid of a host computer. This implies that the proposed system is effective in not only enhancing the run-time reliability of a processor array but also such an environment that the repair by hand is difficult or a processor array is embedded within a VLSI chip where faulty processor elements cannot be monitored externally through the boundary pins of the chip, and so on. Third, the data about the array reliability considering not only faults in processors but also in that digital circuit are given, and then the effectiveness of our scheme is shown.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
G corresponds to a compensation graph in which \(V_1\), \(V_2\) and E correspond to a set of faulty PEs, a set of spare PEs and a set of edges implying replacement relation, respectively.
 
2
\((w,v)\in E\) means w can be replaced by v.
 
3
This is the bottom part in Fig. 8 including the part of “Shift-register”.
 
Literature
1.
go back to reference Kung, S.Y., Jean, S.N., Chang, C.W.: Fault-tolerant array processors using single-track switches. IEEE Trans. Comput. 38(4), 501–514 (1989)CrossRef Kung, S.Y., Jean, S.N., Chang, C.W.: Fault-tolerant array processors using single-track switches. IEEE Trans. Comput. 38(4), 501–514 (1989)CrossRef
2.
go back to reference Mangir, T.E., Avizienis, A.: Fault-tolerant design for VLSI: Effect of interconnection requirements on yield improvement of VLSI designs. IEEE Trans. Comput. c–31(7), 609–615 (1982)CrossRef Mangir, T.E., Avizienis, A.: Fault-tolerant design for VLSI: Effect of interconnection requirements on yield improvement of VLSI designs. IEEE Trans. Comput. c–31(7), 609–615 (1982)CrossRef
3.
go back to reference Leighton, T., Leiserson, E.: Wafer-scale integration of systolic arrays. IEEE Trans. Comput. C–34(5), 448–461 (1985)CrossRefMATH Leighton, T., Leiserson, E.: Wafer-scale integration of systolic arrays. IEEE Trans. Comput. C–34(5), 448–461 (1985)CrossRefMATH
4.
go back to reference Lam, C.W.H., Li, H.F., Jakakumar, R.: A study of two approaches for reconfiguring fault-tolerant systolic arrays. IEEE Trans. Comput. 38(6), 833–844 (1989)MathSciNetCrossRef Lam, C.W.H., Li, H.F., Jakakumar, R.: A study of two approaches for reconfiguring fault-tolerant systolic arrays. IEEE Trans. Comput. 38(6), 833–844 (1989)MathSciNetCrossRef
5.
go back to reference Kim, J.H., Reddy, S.M.: On the design of fault-tolerant two-dimensional systolic arrays for yield enhancement. IEEE Trans. Comput. 38(4), 515–525 (1989)CrossRef Kim, J.H., Reddy, S.M.: On the design of fault-tolerant two-dimensional systolic arrays for yield enhancement. IEEE Trans. Comput. 38(4), 515–525 (1989)CrossRef
6.
go back to reference Negrini, R., Sami, M.G., Stefanelli, R.: Fault-tolerance through reconfiguration of VLSI and WSI arrays. MIT Press series in computer systems. MIT Press, Cambridge (1989) Negrini, R., Sami, M.G., Stefanelli, R.: Fault-tolerance through reconfiguration of VLSI and WSI arrays. MIT Press series in computer systems. MIT Press, Cambridge (1989)
7.
go back to reference Koren, I., Singh, A.D.: Fault tolerance in VLSI circuits. IEEE Comput. 23, 73–83 (1990)CrossRef Koren, I., Singh, A.D.: Fault tolerance in VLSI circuits. IEEE Comput. 23, 73–83 (1990)CrossRef
8.
go back to reference Dutt, S., Hayers, J.P.: Some practical issues in the design of fault-tolerant multiprocessors. IEEE Trans. Comput. 41(5), 588–598 (1992)CrossRef Dutt, S., Hayers, J.P.: Some practical issues in the design of fault-tolerant multiprocessors. IEEE Trans. Comput. 41(5), 588–598 (1992)CrossRef
9.
go back to reference Shigei, N., Miyajima, H., Murashima, S.: On efficient spare arrangements and an algorithm with relocating spares for reconfiguring processor arrays. IEICE Trans. Fundam. E80–A(6), 988–995 (1997) Shigei, N., Miyajima, H., Murashima, S.: On efficient spare arrangements and an algorithm with relocating spares for reconfiguring processor arrays. IEICE Trans. Fundam. E80–A(6), 988–995 (1997)
10.
go back to reference Roychowdhury, V.P., Bruck, J., Kailath, T.: Efficient algorithms for reconstruction in VLSI/WSI array. IEEE Trans. Comput. 39(4), 480–489 (1989)CrossRef Roychowdhury, V.P., Bruck, J., Kailath, T.: Efficient algorithms for reconstruction in VLSI/WSI array. IEEE Trans. Comput. 39(4), 480–489 (1989)CrossRef
11.
go back to reference Sami, M., Negrini, R., Stefanelli, R.: Fault tolerance techniues for array structures used in supercomputing. IEEE Comput. 19(2), 78–87 (1986)CrossRef Sami, M., Negrini, R., Stefanelli, R.: Fault tolerance techniues for array structures used in supercomputing. IEEE Comput. 19(2), 78–87 (1986)CrossRef
12.
go back to reference Sami, M., Stefanelli, R.: Reconfigurable architectures for VLSI processing arrays. Proc. IEEE 74, 712–722 (1986)CrossRef Sami, M., Stefanelli, R.: Reconfigurable architectures for VLSI processing arrays. Proc. IEEE 74, 712–722 (1986)CrossRef
13.
go back to reference Mazumder, P., Jih, Y.S.: Restructuring of square processor arrays by built-in self-repair circuit. IEEE Trans. Comput. Aided Des. 12(9), 1255–1265 (1993)CrossRef Mazumder, P., Jih, Y.S.: Restructuring of square processor arrays by built-in self-repair circuit. IEEE Trans. Comput. Aided Des. 12(9), 1255–1265 (1993)CrossRef
14.
go back to reference Takanami, I., Kurata, K., Watanabe, T.: A neural algorithm for reconstructing mesh-connected processor arrays using single-track switches. Int. Conf. on WSI, 101–110 (1995) Takanami, I., Kurata, K., Watanabe, T.: A neural algorithm for reconstructing mesh-connected processor arrays using single-track switches. Int. Conf. on WSI, 101–110 (1995)
15.
go back to reference Horita, T., Takanami, I.: An efficient method for reconfiguring the 1\(\frac{1}{2}\) track-switch mesh array. IEICE Trans. Inf. Syst. E82–D(12), 1545–1553 (1999) Horita, T., Takanami, I.: An efficient method for reconfiguring the 1\(\frac{1}{2}\) track-switch mesh array. IEICE Trans. Inf. Syst. E82–D(12), 1545–1553 (1999)
16.
go back to reference Horita, T., Takanami, I.: Fault tolerant processor arrays based on the 1\(\frac{1}{2}\)-track switches with flexible spare distributions. IEEE Trans. Comput. 49(6), 542–552 (2000)CrossRef Horita, T., Takanami, I.: Fault tolerant processor arrays based on the 1\(\frac{1}{2}\)-track switches with flexible spare distributions. IEEE Trans. Comput. 49(6), 542–552 (2000)CrossRef
17.
go back to reference Horita, T., Takanami, I.: An FPGA implementation of a self-reconfigurable system for the 1\(\frac{1}{2}\) track-switch 2-D mesh array with PE faults. IEICE Trans. Inf. Syst. E83–D(8), 1701–1705 (2000) Horita, T., Takanami, I.: An FPGA implementation of a self-reconfigurable system for the 1\(\frac{1}{2}\) track-switch 2-D mesh array with PE faults. IEICE Trans. Inf. Syst. E83–D(8), 1701–1705 (2000)
18.
go back to reference Horita, T., Takanami, I.: A system for efficiently self-reconstructing 1\(\frac{1}{2}\)-track switch torus arrays. IEICE Trans. Inf. Syst. E84–D(12), 1801–1809 (2001) Horita, T., Takanami, I.: A system for efficiently self-reconstructing 1\(\frac{1}{2}\)-track switch torus arrays. IEICE Trans. Inf. Syst. E84–D(12), 1801–1809 (2001)
19.
go back to reference Horita, T., Takanami, I.: An efficiently self-reconstructing array system using E-1\(\frac{1}{2}\)-track switches. IEICE Trans. Inf. Syst. E86–D(12), 2743–2752 (2003) Horita, T., Takanami, I.: An efficiently self-reconstructing array system using E-1\(\frac{1}{2}\)-track switches. IEICE Trans. Inf. Syst. E86–D(12), 2743–2752 (2003)
20.
go back to reference Lin, S.Y., Shen, W.C., Hsu, C.C., Wu, A.Y.: Fault-tolerant router with built-in self-test/self-diagnosis and fault-isolation circuits for 2D-mesh based chip multiprocessor systems. Int. J. Electr. Eng. 16(3), 213–222 (2009) Lin, S.Y., Shen, W.C., Hsu, C.C., Wu, A.Y.: Fault-tolerant router with built-in self-test/self-diagnosis and fault-isolation circuits for 2D-mesh based chip multiprocessor systems. Int. J. Electr. Eng. 16(3), 213–222 (2009)
21.
go back to reference Collet, J.H., Zajac, P., Psarakis, M., Gizopoulos, D.: Chip self-organization and fault-tolerance in massively defective multicore arrays. IEEE Trans. Dependable Secure Comput. 8(2), 207–217 (2011)CrossRef Collet, J.H., Zajac, P., Psarakis, M., Gizopoulos, D.: Chip self-organization and fault-tolerance in massively defective multicore arrays. IEEE Trans. Dependable Secure Comput. 8(2), 207–217 (2011)CrossRef
22.
go back to reference Takanami, I.: Self-reconfiguring of 1\(\frac{1}{2}\)-track-switch mesh arrays with spares on one row and one column by simple built-in circuit. IEICE Trans. Inf. Syst. 87(10), 2318–2328 (2004) Takanami, I.: Self-reconfiguring of 1\(\frac{1}{2}\)-track-switch mesh arrays with spares on one row and one column by simple built-in circuit. IEICE Trans. Inf. Syst. 87(10), 2318–2328 (2004)
23.
24.
go back to reference Sugihara, K., Kikuno, T.: Analysis of fault tolerance of reconfigurable arrays using spare processors. IEICE Trans. Inf. Syst. E75–D(3), 315–324 (1992) Sugihara, K., Kikuno, T.: Analysis of fault tolerance of reconfigurable arrays using spare processors. IEICE Trans. Inf. Syst. E75–D(3), 315–324 (1992)
25.
go back to reference Takanami, I., Horita, T.: A built-in circuit for self-repairing mesh-connected processor arrays by direct spare replacement. IEEE Int. Symp. on PRDC, 96–104 (2012) Takanami, I., Horita, T.: A built-in circuit for self-repairing mesh-connected processor arrays by direct spare replacement. IEEE Int. Symp. on PRDC, 96–104 (2012)
Metadata
Title
A Built-in Self-repair Circuit for Restructuring Mesh-Connected Processor Arrays by Direct Spare Replacement
Authors
Itsuo Takanami
Tadayoshi Horita
Masakazu Akiba
Mina Terauchi
Tsuneo Kanno
Copyright Year
2016
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-50412-3_7

Premium Partner