Skip to main content
Top
Published in: Wireless Personal Communications 2/2022

18-02-2022

A Cat-Shaped Patch Antenna for Future Super Wideband Wireless Microwave Applications

Authors: Hiwa Taha Sediq, Javad Nourinia, Changiz Ghobadi

Published in: Wireless Personal Communications | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Compact super wideband (SWB) monopole antenna with a novel Cat-shaped patch is proposed and investigated for wireless applications in this article. The significant characteristics of the designed antenna are: (i) achieving super-wide bandwidth characteristics by emerging a traditional elliptical monopole antenna with triangular shapes to extend the impedance bandwidth of 28:1. (ii) Another essential characteristic of the designed structure is the high bandwidth dimension ratio (BDR) of about 4068 that is attained by increasing the electrical length of the patch. The physical dimension of the designed antenna is (25 × 30) mm2. The designed antenna provides a range of operating bands from 2.43 to 70 GHz with a fractional bandwidth of 187% and demonstrating S11 < − 10 dB in the simulation part. The monopole antenna is fabricated to obtain measured outcomes for validating the simulation results. There is good conformity between simulated and measured and outcomes. Measured frequency ranges of 2.36–67 GHz are obtained with a fractional bandwidth of 186%, S11 < − 10 dB, and BDR of 4068. Although the characteristic antenna can operate normally in the frequency range of 2.43–70 GHz, the experimental results can only measure up to 67 GHz because of the high-frequency limitation of the existing vector network analyzer (VNA). The model SWB antenna has the advantage of good gain, large bandwidth and small dimension on the pre-reported antenna structures. The Simulated realized gain of the design varies from 1.66 to 12.5 dBi, and a fluctuated gain of 1.03–12.19 dBi is achieved in the measured part from the minimum to maximum resonant frequencies. The time domain and frequency domain characterization was analyzed to reveal the suitability of the monopole antenna in SWB wireless applications. The presented antenna can be a good choice in wireless communication systems for these applications, which work with S, C, X, Ka, K, Ku, Q, and U band.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jan, N. A., Kiani, S. H., Sehrai, D. A., Anjum, M. R., Iqbal, A., Abdullah, M., & Kim, S. (2021). Design of a compact monopole antenna for UWB applications. CMC Computers Materials & Continua, 66(1), 35–44. Jan, N. A., Kiani, S. H., Sehrai, D. A., Anjum, M. R., Iqbal, A., Abdullah, M., & Kim, S. (2021). Design of a compact monopole antenna for UWB applications. CMC Computers Materials & Continua, 66(1), 35–44.
2.
go back to reference Ali, T., Subhash, B. K., Pathan, S., & Biradar, R. C. (2018). A compact decagonal-shaped UWB monopole planar antenna with truncated ground plane. Microwave and Optical Technology Letters, 60(12), 2937–2944.CrossRef Ali, T., Subhash, B. K., Pathan, S., & Biradar, R. C. (2018). A compact decagonal-shaped UWB monopole planar antenna with truncated ground plane. Microwave and Optical Technology Letters, 60(12), 2937–2944.CrossRef
3.
go back to reference Sediq, H. T. (2018). Design of ultra-wideband dipole antenna for WiMAX wireless applications. Polytechnic Journal, 8(3), 13–25.CrossRef Sediq, H. T. (2018). Design of ultra-wideband dipole antenna for WiMAX wireless applications. Polytechnic Journal, 8(3), 13–25.CrossRef
4.
go back to reference Lakrit, S., Das, S., Ghosh, S., & Madhav, B. T. P. (2020). Compact UWB flexible elliptical CPW-fed antenna with triple notch bands for wireless communications. International Journal of RF and Microwave Computer-Aided Engineering, 30(7), e22201.CrossRef Lakrit, S., Das, S., Ghosh, S., & Madhav, B. T. P. (2020). Compact UWB flexible elliptical CPW-fed antenna with triple notch bands for wireless communications. International Journal of RF and Microwave Computer-Aided Engineering, 30(7), e22201.CrossRef
5.
go back to reference Okan, T. (2020). A compact octagonal-ring monopole antenna for super wideband applications. Microwave and Optical Technology Letters, 62(3), 1237–1244.CrossRef Okan, T. (2020). A compact octagonal-ring monopole antenna for super wideband applications. Microwave and Optical Technology Letters, 62(3), 1237–1244.CrossRef
6.
go back to reference Syeed, M. A. A., Samsuzzaman, M., Islam, M. T., Azim, R., & Islam, M. T. (2018). Polygonal shaped patch with circular slotted ground antenna for Ultra-Wideband applications. In 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2) (pp. 1–4). IEEE.‏ Syeed, M. A. A., Samsuzzaman, M., Islam, M. T., Azim, R., & Islam, M. T. (2018). Polygonal shaped patch with circular slotted ground antenna for Ultra-Wideband applications. In 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2) (pp. 1–4). IEEE.‏
7.
go back to reference Chen, S., Pan, T., Yan, Z., Gao, M., & Lin, Y. (2018). Flexible ultra-wideband rectangle monopole antenna with O-slot insertion design. Science China Information Sciences, 61(6), 1–9.MathSciNet Chen, S., Pan, T., Yan, Z., Gao, M., & Lin, Y. (2018). Flexible ultra-wideband rectangle monopole antenna with O-slot insertion design. Science China Information Sciences, 61(6), 1–9.MathSciNet
8.
go back to reference Rahman, M. N., Islam, M. T., Mahmud, M. Z., & Samsuzzaman, M. (2017). Compact microstrip patch antenna proclaiming super wideband characteristics. Microwave and Optical Technology Letters, 59(10), 2563–2570.CrossRef Rahman, M. N., Islam, M. T., Mahmud, M. Z., & Samsuzzaman, M. (2017). Compact microstrip patch antenna proclaiming super wideband characteristics. Microwave and Optical Technology Letters, 59(10), 2563–2570.CrossRef
10.
go back to reference Saha, T. K., Knaus, T. N., Khosla, A., & Sekhar, P. K. (2018). A CPW-fed flexible UWB antenna for IoT applications (pp. 1–7). Microsystem Technologies. Saha, T. K., Knaus, T. N., Khosla, A., & Sekhar, P. K. (2018). A CPW-fed flexible UWB antenna for IoT applications (pp. 1–7). Microsystem Technologies.
11.
go back to reference Hasan, M. R., Riheen, M. A., Sekhar, P., & Karacolak, T. (2020). Compact CPW-fed circular patch flexible antenna for super-wideband applications. IET Microwaves, Antennas & Propagation, 14(10), 1069–1073.CrossRef Hasan, M. R., Riheen, M. A., Sekhar, P., & Karacolak, T. (2020). Compact CPW-fed circular patch flexible antenna for super-wideband applications. IET Microwaves, Antennas & Propagation, 14(10), 1069–1073.CrossRef
12.
go back to reference Singhal, S., & Singh, A. K. (2016). CPW-fed hexagonal Sierpinski super wideband fractal antenna. IET Microwaves, Antennas & Propagation, 10(15), 1701–1707.CrossRef Singhal, S., & Singh, A. K. (2016). CPW-fed hexagonal Sierpinski super wideband fractal antenna. IET Microwaves, Antennas & Propagation, 10(15), 1701–1707.CrossRef
13.
go back to reference Sediq, H. T., & Mohammed, Y. N. (2020). Performance analysis of novel multi-band monopole antenna for various broadband wireless applications. Wireless Personal Communications, 112(1), 571–585.CrossRef Sediq, H. T., & Mohammed, Y. N. (2020). Performance analysis of novel multi-band monopole antenna for various broadband wireless applications. Wireless Personal Communications, 112(1), 571–585.CrossRef
14.
go back to reference Alluri, S., & Rangaswamy, N. (2020). Compact high bandwidth dimension ratio steering-shaped super wideband antenna for future wireless communication applications. Microwave and Optical Technology Letters, 62(12), 3985–3991.CrossRef Alluri, S., & Rangaswamy, N. (2020). Compact high bandwidth dimension ratio steering-shaped super wideband antenna for future wireless communication applications. Microwave and Optical Technology Letters, 62(12), 3985–3991.CrossRef
15.
go back to reference Oskouei, H. D., & Mirtaheri, A. (2017). A monopole super wideband microstrip antenna with band-notch rejection. In 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL) (pp. 2019–2024). IEEE.‏ Oskouei, H. D., & Mirtaheri, A. (2017). A monopole super wideband microstrip antenna with band-notch rejection. In 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL) (pp. 2019–2024). IEEE.‏
16.
go back to reference Mishra, G., & Sahu, S. (2016). Compact circular patch antenna for SWB applications. In 2016 International Conference on Communication and Signal Processing (ICCSP) (pp. 0727–0730). IEEE.‏ Mishra, G., & Sahu, S. (2016). Compact circular patch antenna for SWB applications. In 2016 International Conference on Communication and Signal Processing (ICCSP) (pp. 0727–0730). IEEE.‏
17.
go back to reference Singhal, S., & Singh, A. K. (2020). Elliptical monopole based super wideband fractal antenna. Microwave and Optical Technology Letters, 62(3), 1324–1328.CrossRef Singhal, S., & Singh, A. K. (2020). Elliptical monopole based super wideband fractal antenna. Microwave and Optical Technology Letters, 62(3), 1324–1328.CrossRef
18.
go back to reference Yu, C., Yang, S., Chen, Y., Wang, W., Zhang, L., Li, B., & Wang, L. (2020). A super-wideband and high isolation MIMO antenna system using a windmill-shaped decoupling structure. IEEE Access, 8, 115767–115777.CrossRef Yu, C., Yang, S., Chen, Y., Wang, W., Zhang, L., Li, B., & Wang, L. (2020). A super-wideband and high isolation MIMO antenna system using a windmill-shaped decoupling structure. IEEE Access, 8, 115767–115777.CrossRef
20.
go back to reference Figueroa-Torres, C. Á., Medina-Monroy, J. L., Lobato-Morales, H., Chávez-Pérez, R. A., & Calvillo-Téllez, A. (2017). A novel fractal antenna based on the Sierpinski structure for super wide-band applications. Microwave and Optical Technology Letters, 59(5), 1148–1153.CrossRef Figueroa-Torres, C. Á., Medina-Monroy, J. L., Lobato-Morales, H., Chávez-Pérez, R. A., & Calvillo-Téllez, A. (2017). A novel fractal antenna based on the Sierpinski structure for super wide-band applications. Microwave and Optical Technology Letters, 59(5), 1148–1153.CrossRef
21.
go back to reference Boologam, A. V., Krishnan, K., Palaniswamy, S. K., Manimegalai, C. T., & Gauni, S. (2020). On the design and analysis of compact super-wideband quad element chiral mimo array for high data rate applications. Electronics, 9(12), 1995.CrossRef Boologam, A. V., Krishnan, K., Palaniswamy, S. K., Manimegalai, C. T., & Gauni, S. (2020). On the design and analysis of compact super-wideband quad element chiral mimo array for high data rate applications. Electronics, 9(12), 1995.CrossRef
22.
go back to reference Sharma, V., Deegwal, J. K., & Mathur, D. (2021). Super-wideband compact offset elliptical ring patch antenna for 5G applications (pp. 1–16). Wireless Personal Communications. Sharma, V., Deegwal, J. K., & Mathur, D. (2021). Super-wideband compact offset elliptical ring patch antenna for 5G applications (pp. 1–16). Wireless Personal Communications.
23.
go back to reference Sayidmarie, K. H., & Fadhel, Y. A. (2012). Design aspects of UWB printed elliptical monopole antenna with impedance matching. In Proceedings of 2012 Loughborough antennas & propagation conference (LAPC), Loughborough, UK, 12–13 November,1–4. Sayidmarie, K. H., & Fadhel, Y. A. (2012). Design aspects of UWB printed elliptical monopole antenna with impedance matching. In Proceedings of 2012 Loughborough antennas & propagation conference (LAPC), Loughborough, UK, 12–13 November,1–4.
24.
go back to reference Okas, P., Sharma, A., Das, G., & Gangwar, R. K. (2018). Elliptical slot loaded partially segmented circular monopole antenna for super wideband application. AEU-International Journal of Electronics and Communications, 88, 63–69. Okas, P., Sharma, A., Das, G., & Gangwar, R. K. (2018). Elliptical slot loaded partially segmented circular monopole antenna for super wideband application. AEU-International Journal of Electronics and Communications, 88, 63–69.
25.
go back to reference Rahman, M., Khan, W. T., & Imran, M. (2018). Penta-notched UWB antenna with sharp frequency edge selectivity using combination of SRR, CSRR, and DGS. AEU-International Journal of Electronics and Communications, 93, 116–122. Rahman, M., Khan, W. T., & Imran, M. (2018). Penta-notched UWB antenna with sharp frequency edge selectivity using combination of SRR, CSRR, and DGS. AEU-International Journal of Electronics and Communications, 93, 116–122.
Metadata
Title
A Cat-Shaped Patch Antenna for Future Super Wideband Wireless Microwave Applications
Authors
Hiwa Taha Sediq
Javad Nourinia
Changiz Ghobadi
Publication date
18-02-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09605-1

Other articles of this Issue 2/2022

Wireless Personal Communications 2/2022 Go to the issue