Skip to main content
Top

2018 | OriginalPaper | Chapter

A Collagen-Hyaluronic Acid Matrix for Stem Cell Culture

Authors : Euisung Chung, Geajin Yoon, Hwal (Matthew) Suh

Published in: Biological, Physical and Technical Basics of Cell Engineering

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, the regenerative medicine has been introduced to promote self-restoration, replacement and regeneration of impaired bodily function of tissues or organs by delivering viable cells which are genetically appropriate to patients. In this study, porous matrices of nano fibrous collagen-HA were produced, and their affinity to human bone marrow derived mesenchymal stem cells (hBM-MSCs), human embryonic stem cells (hESC) and human induced pluripotnent stem cells (hiPSC) were evaluated through observing expression of specific proteins, DNA or RNA, to investigate possibilities of using the matrix in regenerative medicine.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Suh, H., Chung, E., & Jae Hyung, K. (2013). Global safety guidance for the cell-based implants. Tissue Science & Engineering, 4. Suh, H., Chung, E., & Jae Hyung, K. (2013). Global safety guidance for the cell-based implants. Tissue Science & Engineering, 4.
2.
go back to reference Suh, H. (1998). Fundamental concepts for the tissue engineering. Biomaterials Research, 2, 1–7. Suh, H. (1998). Fundamental concepts for the tissue engineering. Biomaterials Research, 2, 1–7.
3.
go back to reference Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260, 920–926.CrossRef Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260, 920–926.CrossRef
4.
go back to reference Langer, R., & Tirrell, D. A. (2004). Designing materials for biology and medicine. Nature, 428, 487–492.CrossRef Langer, R., & Tirrell, D. A. (2004). Designing materials for biology and medicine. Nature, 428, 487–492.CrossRef
5.
go back to reference Murphy, S. V., & Atala, A. (2013). Organ engineering—combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. BioEssays, 35, 163–172.CrossRef Murphy, S. V., & Atala, A. (2013). Organ engineering—combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. BioEssays, 35, 163–172.CrossRef
7.
go back to reference Matthews, J. A., Wnek, G. E., Simpson, D. G., & Bowlin, G. L. (2002). Electrospinning of collagen nanofibers. Biomacromolecules, 3, 232–238.CrossRef Matthews, J. A., Wnek, G. E., Simpson, D. G., & Bowlin, G. L. (2002). Electrospinning of collagen nanofibers. Biomacromolecules, 3, 232–238.CrossRef
8.
go back to reference Hsu, F. Y., Hung, Y. S., Liou, H. M., & Shen, C. H. (2010). Electrospun hyaluronate-collagen nanofibrous matrix and the effects of varying the concentration of hyaluronate on the characteristics of foreskin fibroblast cells. Acta Biomaterialia, 6, 2140–2147.CrossRef Hsu, F. Y., Hung, Y. S., Liou, H. M., & Shen, C. H. (2010). Electrospun hyaluronate-collagen nanofibrous matrix and the effects of varying the concentration of hyaluronate on the characteristics of foreskin fibroblast cells. Acta Biomaterialia, 6, 2140–2147.CrossRef
9.
go back to reference Sell, S. A., Wolfe, P. S., Garg, K., McCool, J. M., Rodriguez, I. A., & Bowlin, G. L. (2010). The use of natural polymers in tissue engineering: A focus on electrospun extracellular matrix analogues. Polymers, 2, 522.CrossRef Sell, S. A., Wolfe, P. S., Garg, K., McCool, J. M., Rodriguez, I. A., & Bowlin, G. L. (2010). The use of natural polymers in tissue engineering: A focus on electrospun extracellular matrix analogues. Polymers, 2, 522.CrossRef
10.
go back to reference Suh, H., & Lee, J. E. (2002). Behavior of fibroblasts on a porous hyaluronic acid incorporated collagen matrix. Yonsei Medical Journal, 43, 193–202.CrossRef Suh, H., & Lee, J. E. (2002). Behavior of fibroblasts on a porous hyaluronic acid incorporated collagen matrix. Yonsei Medical Journal, 43, 193–202.CrossRef
11.
go back to reference Park, S. N., Lee, H. J., Lee, K. H., & Suh, H. (2003). Biological characterization of EDC-crosslinked collagen- hyaluronic acid matrix in dermal tissue restoration. Biomaterials, 24, 1631–1641.CrossRef Park, S. N., Lee, H. J., Lee, K. H., & Suh, H. (2003). Biological characterization of EDC-crosslinked collagen- hyaluronic acid matrix in dermal tissue restoration. Biomaterials, 24, 1631–1641.CrossRef
12.
go back to reference Park, S. N., Park, J. C., Kim, H. O., Song, M. J., & Suh, H. (2002). Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials, 23, 1205–1212.CrossRef Park, S. N., Park, J. C., Kim, H. O., Song, M. J., & Suh, H. (2002). Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide cross-linking. Biomaterials, 23, 1205–1212.CrossRef
13.
go back to reference Lee, J. M., Edwards, H. H. L., Pereira, C. A., Samii, S. I. Crosslinking of tissue-derived biomaterials in 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). Journal of Materials Science: Materials in Medicine, 7, 531–541. Lee, J. M., Edwards, H. H. L., Pereira, C. A., Samii, S. I. Crosslinking of tissue-derived biomaterials in 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). Journal of Materials Science: Materials in Medicine, 7, 531–541.
14.
go back to reference Fischer, R. L., McCoy, M. G., & Grant, S. A. (2012). Electrospinning collagen and hyaluronic acid nanofiber meshes. Journal of Materials Science Materials in Medicine, 23, 1645–1654.CrossRef Fischer, R. L., McCoy, M. G., & Grant, S. A. (2012). Electrospinning collagen and hyaluronic acid nanofiber meshes. Journal of Materials Science Materials in Medicine, 23, 1645–1654.CrossRef
15.
go back to reference Kim, T. G., Chung, H. J., & Park, T. G. (2008). Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomaterialia, 4, 1611–1619.CrossRef Kim, T. G., Chung, H. J., & Park, T. G. (2008). Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomaterialia, 4, 1611–1619.CrossRef
16.
go back to reference Glowacki, J., & Mizuno, S. (2008). Collagen scaffolds for tissue engineering. Biopolymers, 89, 338–344.CrossRef Glowacki, J., & Mizuno, S. (2008). Collagen scaffolds for tissue engineering. Biopolymers, 89, 338–344.CrossRef
17.
go back to reference Parenteau-Bareil, R., Gauvin, R., & Berthod, F. (2010). Collagen-based biomaterials for tissue engineering applications. Materials, 3, 1863.CrossRef Parenteau-Bareil, R., Gauvin, R., & Berthod, F. (2010). Collagen-based biomaterials for tissue engineering applications. Materials, 3, 1863.CrossRef
18.
go back to reference Furthmayr, H., & Timpl, R. (1976). Immunochemistry of collagens and procollagens. International Review Connective Tissue Research, 7, 61–99.CrossRef Furthmayr, H., & Timpl, R. (1976). Immunochemistry of collagens and procollagens. International Review Connective Tissue Research, 7, 61–99.CrossRef
19.
go back to reference Her, G. J., Wu, H. C., Chen, M. H., Chen, M. Y., Chang, S. C., & Wang, T. W. (2013). Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages. Acta Biomaterialia, 9, 5170–5180.CrossRef Her, G. J., Wu, H. C., Chen, M. H., Chen, M. Y., Chang, S. C., & Wang, T. W. (2013). Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages. Acta Biomaterialia, 9, 5170–5180.CrossRef
20.
go back to reference Murphy, C. M., Matsiko, A., Haugh, M. G., Gleeson, J. P., & O’Brien, F. J. (2012). Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 11, 53–62.CrossRef Murphy, C. M., Matsiko, A., Haugh, M. G., Gleeson, J. P., & O’Brien, F. J. (2012). Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 11, 53–62.CrossRef
21.
go back to reference Hortensius, R. A., & Harley, B. A. (2013). The use of bioinspired alterations in the glycosaminoglycan content of collagen-GAG scaffolds to regulate cell activity. Biomaterials, 34, 7645–7652.CrossRef Hortensius, R. A., & Harley, B. A. (2013). The use of bioinspired alterations in the glycosaminoglycan content of collagen-GAG scaffolds to regulate cell activity. Biomaterials, 34, 7645–7652.CrossRef
22.
go back to reference Knudson, C. B. (2003). Hyaluronan and CD44: Strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res C Embryo Today, 69, 174–196.CrossRef Knudson, C. B. (2003). Hyaluronan and CD44: Strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res C Embryo Today, 69, 174–196.CrossRef
23.
go back to reference Wang, X., Ding, B., & Li, B. (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16, 229–241.CrossRef Wang, X., Ding, B., & Li, B. (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16, 229–241.CrossRef
24.
go back to reference Gupta, K. C., Haider, A., Y, Choi, & I, Kang. (2014). Nanofibrous scaffolds in biomedical applications. Biomaterials Research, 18, 1–11.CrossRef Gupta, K. C., Haider, A., Y, Choi, & I, Kang. (2014). Nanofibrous scaffolds in biomedical applications. Biomaterials Research, 18, 1–11.CrossRef
25.
go back to reference Lu, T., Li, Y., & Chen, T. (2013). Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. International Journal of Nanomedicine, 8, 337–350.CrossRef Lu, T., Li, Y., & Chen, T. (2013). Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. International Journal of Nanomedicine, 8, 337–350.CrossRef
26.
go back to reference Shih, Y. R. V., Chen, C. N., Tsai, S. W., Wang, Y. J., & Lee, O. K. (2006). Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells, 24, 2391–2397.CrossRef Shih, Y. R. V., Chen, C. N., Tsai, S. W., Wang, Y. J., & Lee, O. K. (2006). Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells, 24, 2391–2397.CrossRef
27.
go back to reference Park, S. N., Kim, J. H., Kim, I., Seol, A., & Suh, H. (2006). Electrospun nanofibrous matrices for the engineering of cultured skin substitute. Biomaterials Research, 10, 7. Park, S. N., Kim, J. H., Kim, I., Seol, A., & Suh, H. (2006). Electrospun nanofibrous matrices for the engineering of cultured skin substitute. Biomaterials Research, 10, 7.
28.
go back to reference Dong, B., Arnoult, O., Smith, M. E., & Wnek, G. E. (2009). Electrospinning of collagen nanofiber scaffolds from benign solvents. Macromolecular Rapid Communications, 30, 539–542.CrossRef Dong, B., Arnoult, O., Smith, M. E., & Wnek, G. E. (2009). Electrospinning of collagen nanofiber scaffolds from benign solvents. Macromolecular Rapid Communications, 30, 539–542.CrossRef
29.
go back to reference Suh, H., Suh, S., & Min, B. (1994). Anti-infection treatment of a transcutaneous device by a collagen- rifampicine composite. ASAIO Journal, 40, M406–M411.CrossRef Suh, H., Suh, S., & Min, B. (1994). Anti-infection treatment of a transcutaneous device by a collagen- rifampicine composite. ASAIO Journal, 40, M406–M411.CrossRef
30.
go back to reference Wang, X., Um, I. C., Fang, D., Okamoto, A., Hsiao, B. S., & Chu, B. (2005). Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer, 46, 4853–4867.CrossRef Wang, X., Um, I. C., Fang, D., Okamoto, A., Hsiao, B. S., & Chu, B. (2005). Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer, 46, 4853–4867.CrossRef
31.
go back to reference Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28, 325–347.CrossRef Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28, 325–347.CrossRef
32.
go back to reference Barnes, C. P., Sell, S. A., Boland, E. D., Simpson, D. G., & Bowlin, G. L. (2007). Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Advanced Drug Delivery Reviews, 59, 1413–1433.CrossRef Barnes, C. P., Sell, S. A., Boland, E. D., Simpson, D. G., & Bowlin, G. L. (2007). Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Advanced Drug Delivery Reviews, 59, 1413–1433.CrossRef
Metadata
Title
A Collagen-Hyaluronic Acid Matrix for Stem Cell Culture
Authors
Euisung Chung
Geajin Yoon
Hwal (Matthew) Suh
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7904-7_4