Skip to main content
Top
Published in: Journal of Engineering Thermophysics 1/2023

01-03-2023

A Comparative Study of TIP4P-2005, SPC/E, SPC, and TIP3P-Ew Models for Predicting Water Transport Coefficients Using EMD and NEMD Simulations

Authors: H. Dorrani, A. Mohebbi

Published in: Journal of Engineering Thermophysics | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Paying attention to transport phenomena in fluids has always been an integral part in designing chemical processes and water has always been a major part of scientific researches. In this study, the self-diffusion coefficient, shear viscosity and thermal conductivity of water at 298.15 K and 1 atm pressure were predicted and compared using four models of TIP3P-Ew, SPC, SPC/E and TIP4P-2005 by equilibrium and non-equilibrium molecular dynamics (NEMD) simulations. To predict the self-diffusion coefficient and shear viscosity, two equilibrium methods of Green-Kubo and Einstein were applied and there was approximately no difference between the results of these methods. Among the studied models, the results of TIP4P-2005 had the highest consistency with experimental data. To predict the thermal conductivity, Green-Kubo and NEMD methods were employed. The NEMD was a far more accurate and better method than Green-Kubo method and the results of TIP3P-Ew model had the highest agreement with the experimental data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mao, Y. and Zhang, Y., Thermal Conductivity, Shear Viscosity and Specific Heat of Rigid Water Models, Chem. Phys. Lett., 2012, vol. 542, pp. 37–41; https://doi.org/10.1016/j.cplett.2012.05.044.ADSCrossRef Mao, Y. and Zhang, Y., Thermal Conductivity, Shear Viscosity and Specific Heat of Rigid Water Models, Chem. Phys. Lett., 2012, vol. 542, pp. 37–41; https://​doi.​org/​10.​1016/​j.​cplett.​2012.​05.​044.​ADSCrossRef
2.
go back to reference Lee, S.H., Temperature Dependence of the Thermal Conductivity of Water: A Molecular Dynamics Simulation Study Using The SPC/E Model, Mol. Phys., 2014, vol. 112, pp. 2155–2159; https://doi.org/ 10.1080/00268976.2014.891769.ADSCrossRef Lee, S.H., Temperature Dependence of the Thermal Conductivity of Water: A Molecular Dynamics Simulation Study Using The SPC/E Model, Mol. Phys., 2014, vol. 112, pp. 2155–2159; https://​doi.​org/​ 10.1080/00268976.2014.891769.ADSCrossRef
3.
go back to reference Lee, S.H. and Kim, J., Transport Properties of Bulk Water at 243–550 K: A Comparative Molecular Dynamics Simulation Study Using SPC/E, TIP4P, and TIP4P/2005 Water Models, Mol. Phys., 2019, vol. 117, pp. 1926–1933; https://doi.org/10.1080/00268976.2018.1562123.ADSCrossRef Lee, S.H. and Kim, J., Transport Properties of Bulk Water at 243–550 K: A Comparative Molecular Dynamics Simulation Study Using SPC/E, TIP4P, and TIP4P/2005 Water Models, Mol. Phys., 2019, vol. 117, pp. 1926–1933; https://​doi.​org/​10.​1080/​00268976.​2018.​1562123.​ADSCrossRef
4.
go back to reference Guevara-Carrion, G., Vrabec, J., and Hasse, H., Prediction of Self-Diffusion Coefficient and Shear Viscosity of Water and Its Binary Mixtures with Methanol and Ethanol by Molecular Simulation, J. Chem. Phys., 2011, vol. 134; https://doi.org/10.1063/1.3515262.ADSCrossRef Guevara-Carrion, G., Vrabec, J., and Hasse, H., Prediction of Self-Diffusion Coefficient and Shear Viscosity of Water and Its Binary Mixtures with Methanol and Ethanol by Molecular Simulation, J. Chem. Phys., 2011, vol. 134; https://​doi.​org/​10.​1063/​1.​3515262.​ADSCrossRef
5.
go back to reference Müller-Plathe, F., Reversing the Perturbation in Nonequilibrium Molecular Dynamics: An Easy Way to Calculate the Shear Viscosity of Fluids, Phys. Rev. E, Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, vol. 59, pp. 4894–4898; https://doi.org/10.1103/PhysRevE.59.4894.ADSCrossRef Müller-Plathe, F., Reversing the Perturbation in Nonequilibrium Molecular Dynamics: An Easy Way to Calculate the Shear Viscosity of Fluids, Phys. Rev. E, Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, vol. 59, pp. 4894–4898; https://​doi.​org/​10.​1103/​PhysRevE.​59.​4894.​ADSCrossRef
6.
go back to reference Müller-Plathe, F. and Bordat, P., Reverse Non-Equilibrium Molecular Dynamics, in Nov. Methods Soft Matter Simulations, Springer, 2004, pp. 310–326; https://doi.org/https://doi.org/10.1007/978-3-540-39895-0_10. Müller-Plathe, F. and Bordat, P., Reverse Non-Equilibrium Molecular Dynamics, in Nov. Methods Soft Matter Simulations, Springer, 2004, pp. 310–326; https://​doi.​org/​https://doi.org/10.1007/978-3-540-39895-0_10.
7.
go back to reference Vega, C., Abascal, J.L.F., Conde, M.M., and Aragones, J.L., What Ice Can Teach Us about Water Interactions: A Critical Comparison of the Performance of Different Water Models, Faraday Discuss., 2008, vol. 141, pp. 251–276; https://doi.org/10.1039/b805531a.ADSCrossRef Vega, C., Abascal, J.L.F., Conde, M.M., and Aragones, J.L., What Ice Can Teach Us about Water Interactions: A Critical Comparison of the Performance of Different Water Models, Faraday Discuss., 2008, vol. 141, pp. 251–276; https://​doi.​org/​10.​1039/​b805531a.​ADSCrossRef
8.
go back to reference Fuentes-Azcatl, R., Mendoza, N., and Alejandre, J., Improved SPC Force Field of Water Based on the Dielectric Constant: SPC/\(\varepsilon\), Phys. A Stat. Mech. Its Appl., 2015, vol. 420, pp. 116–123; https://doi.org/ 10.1016/j.physa.2014.10.072.ADSCrossRef Fuentes-Azcatl, R., Mendoza, N., and Alejandre, J., Improved SPC Force Field of Water Based on the Dielectric Constant: SPC/\(\varepsilon\), Phys. A Stat. Mech. Its Appl., 2015, vol. 420, pp. 116–123; https://​doi.​org/​ 10.1016/j.physa.2014.10.072.ADSCrossRef
9.
go back to reference Sakuma, H., Ichiki, M., Kawamura, K., and Fuji-Ta, K., Prediction of Physical Properties of Water under Extremely Supercritical Conditions: A Molecular Dynamics Study, J. Chem. Phys., 2013, vol. 138; https://doi.org/10.1063/1.4798222.ADSCrossRef Sakuma, H., Ichiki, M., Kawamura, K., and Fuji-Ta, K., Prediction of Physical Properties of Water under Extremely Supercritical Conditions: A Molecular Dynamics Study, J. Chem. Phys., 2013, vol. 138; https://​doi.​org/​10.​1063/​1.​4798222.​ADSCrossRef
10.
go back to reference Alkhwaji, A., Elbahloul, S., Abdullah, M.Z., and Bakar, K.F.B.A., Selected Water Thermal Properties from Molecular Dynamics for Engineering Purposes, J. Mol. Liq., 2020; https://doi.org/10.1016/ j.molliq.2020.114703.CrossRef Alkhwaji, A., Elbahloul, S., Abdullah, M.Z., and Bakar, K.F.B.A., Selected Water Thermal Properties from Molecular Dynamics for Engineering Purposes, J. Mol. Liq., 2020; https://​doi.​org/​10.​1016/​ j.molliq.2020.114703.CrossRef
11.
go back to reference Abbasi, M., Heyhat, M.M., and Rajabpour, A., Study of the Effects of Particle Shape and Base Fluid Type on Density of Nanofluids Using Ternary Mixture Formula: A Molecular Dynamics Simulation, J. Mol. Liq., 2020, vol. 305; https://doi.org/10.1016/j.molliq.2020.112831.CrossRef Abbasi, M., Heyhat, M.M., and Rajabpour, A., Study of the Effects of Particle Shape and Base Fluid Type on Density of Nanofluids Using Ternary Mixture Formula: A Molecular Dynamics Simulation, J. Mol. Liq., 2020, vol. 305; https://​doi.​org/​10.​1016/​j.​molliq.​2020.​112831.​CrossRef
12.
go back to reference Wang, X. and Jing, D., Determination of Thermal Conductivity of Interfacial Layer in Nanofluids by Equilibrium Molecular Dynamics Simulation, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 199–207; https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.073.CrossRef Wang, X. and Jing, D., Determination of Thermal Conductivity of Interfacial Layer in Nanofluids by Equilibrium Molecular Dynamics Simulation, Int. J. Heat Mass Transfer, 2019, vol. 128, pp. 199–207; https://​doi.​org/​10.​1016/​j.​ijheatmasstransf​er.​2018.​08.​073.​CrossRef
13.
go back to reference Sirk, T.W., Moore, S., and Brown, E.F., Characteristics of Thermal Conductivity in Classical Water Models, J. Chem. Phys., 2013, vol. 138; https://doi.org/10.1063/1.4789961.ADSCrossRef Sirk, T.W., Moore, S., and Brown, E.F., Characteristics of Thermal Conductivity in Classical Water Models, J. Chem. Phys., 2013, vol. 138; https://​doi.​org/​10.​1063/​1.​4789961.​ADSCrossRef
14.
go back to reference Orsi, M., Comparative Assessment of the ELBA Coarse-Grained Model for Water, Mol. Phys., 2014, vol. 112, pp. 1566–1576; https://doi.org/10.1080/00268976.2013.844373.ADSCrossRef Orsi, M., Comparative Assessment of the ELBA Coarse-Grained Model for Water, Mol. Phys., 2014, vol. 112, pp. 1566–1576; https://​doi.​org/​10.​1080/​00268976.​2013.​844373.​ADSCrossRef
15.
go back to reference Helfand, E., Transport Coefficients from Dissipation in a Canonical Ensemble, Phys. Rev., 1960, vol. 119, pp. 1–9; https://doi.org/10.1103/PhysRev.119.1.ADSMathSciNetCrossRefMATH Helfand, E., Transport Coefficients from Dissipation in a Canonical Ensemble, Phys. Rev., 1960, vol. 119, pp. 1–9; https://​doi.​org/​10.​1103/​PhysRev.​119.​1.​ADSMathSciNetCrossRefMATH
16.
go back to reference Kirova, E.M. and Norman, G.E., Viscosity Calculations at Molecular Dynamics Simulations, 2016; https://doi.org/10.1088/1742-6596/653/1/012106.CrossRef Kirova, E.M. and Norman, G.E., Viscosity Calculations at Molecular Dynamics Simulations, 2016; https://​doi.​org/​10.​1088/​1742-6596/​653/​1/​012106.​CrossRef
17.
go back to reference Zhao, X. and Jin, H., Investigation of Hydrogen Diffusion in Supercritical Water: A Molecular Dynamics Simulation Study, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 718–728; https://doi.org/10.1016/ j.ijheatmasstransfer.2018.12.164.CrossRef Zhao, X. and Jin, H., Investigation of Hydrogen Diffusion in Supercritical Water: A Molecular Dynamics Simulation Study, Int. J. Heat Mass Transfer, 2019, vol. 133, pp. 718–728; https://​doi.​org/​10.​1016/​ j.ijheatmasstransfer.2018.12.164.CrossRef
18.
go back to reference Erdös, M., Frangou, M., Vlugt, T.J.H., and Moultos, O.A., Diffusivity of \(\alpha\)-, \(\beta\)-, \(\gamma\)-Cyclodextrin and the Inclusion Complex of \(\beta\)-Cyclodextrin: Ibuprofen in Aqueous Solutions; A Molecular Dynamics Simulation Study, Fluid Phase Equilib., 2021, vol. 528; https://doi.org/10.1016/j.fluid.2020.112842.CrossRef Erdös, M., Frangou, M., Vlugt, T.J.H., and Moultos, O.A., Diffusivity of \(\alpha\)-, \(\beta\)-, \(\gamma\)-Cyclodextrin and the Inclusion Complex of \(\beta\)-Cyclodextrin: Ibuprofen in Aqueous Solutions; A Molecular Dynamics Simulation Study, Fluid Phase Equilib., 2021, vol. 528; https://​doi.​org/​10.​1016/​j.​fluid.​2020.​112842.​CrossRef
19.
go back to reference Boyd, S.J., Krishnan, Y., Ghaani, M.R., and English, N.J., Influence of External Static and Alternating Electric Fields on Self-Diffusion of Water from Molecular Dynamics, J. Mol. Liq., 2021, vol. 327, p. 114788; https://doi.org/10.1016/j.molliq.2020.114788.CrossRef Boyd, S.J., Krishnan, Y., Ghaani, M.R., and English, N.J., Influence of External Static and Alternating Electric Fields on Self-Diffusion of Water from Molecular Dynamics, J. Mol. Liq., 2021, vol. 327, p. 114788; https://​doi.​org/​10.​1016/​j.​molliq.​2020.​114788.​CrossRef
20.
go back to reference Meyer, N., Piquet, V., Wax, J.F., Xu, H., and Millot, C., Rotational and Translational Dynamics of the SPC/E Water Model, J. Mol. Liq., 2019, vol. 275, pp. 895–908; https://doi.org/10.1016/j.molliq.2018.08.024.CrossRef Meyer, N., Piquet, V., Wax, J.F., Xu, H., and Millot, C., Rotational and Translational Dynamics of the SPC/E Water Model, J. Mol. Liq., 2019, vol. 275, pp. 895–908; https://​doi.​org/​10.​1016/​j.​molliq.​2018.​08.​024.​CrossRef
21.
go back to reference Arismendi-Arrieta, D., Medina, J.S., Fanourgakis, G.S., Prosmiti, R., and Delgado-Barrio, G., Simulating Liquid Water for Determining Its Structural and Transport Properties, Appl. Radiat. Isot., 2014, vol. 83, pp. 115–121; https://doi.org/10.1016/j.apradiso.2013.01.020.CrossRef Arismendi-Arrieta, D., Medina, J.S., Fanourgakis, G.S., Prosmiti, R., and Delgado-Barrio, G., Simulating Liquid Water for Determining Its Structural and Transport Properties, Appl. Radiat. Isot., 2014, vol. 83, pp. 115–121; https://​doi.​org/​10.​1016/​j.​apradiso.​2013.​01.​020.​CrossRef
22.
go back to reference Meier, K., Laesecke, A., and Kabelac, S., Transport Coefficients of the Lennard-Jones Model Fluid. I. Viscosity, J. Chem. Phys., 2004, vol. 121, pp. 671–3687; https://doi.org/10.1063/1.1770695.ADSCrossRef Meier, K., Laesecke, A., and Kabelac, S., Transport Coefficients of the Lennard-Jones Model Fluid. I. Viscosity, J. Chem. Phys., 2004, vol. 121, pp. 671–3687; https://​doi.​org/​10.​1063/​1.​1770695.​ADSCrossRef
23.
go back to reference Scott, R., Allen, M.P., and Tildesley, D.J., Computer Simulation of Liquids, Math. Comput., 1991, vol. 57, p. 442; https://doi.org/10.2307/2938686.CrossRef Scott, R., Allen, M.P., and Tildesley, D.J., Computer Simulation of Liquids, Math. Comput., 1991, vol. 57, p. 442; https://​doi.​org/​10.​2307/​2938686.​CrossRef
24.
go back to reference Jamali, S.H., Hartkamp, R., Bardas, C., Söhl, J., Vlugt, T.J.H., and Moultos, O.A., Shear Viscosity Computed from the Finite-Size Effects of Self-Diffusivity in Equilibrium Molecular Dynamics, J. Chem. Theory Comput., 2018, vol. 14, pp. 5959–5968; https://doi.org/10.1021/acs.jctc.8b0062.CrossRef Jamali, S.H., Hartkamp, R., Bardas, C., Söhl, J., Vlugt, T.J.H., and Moultos, O.A., Shear Viscosity Computed from the Finite-Size Effects of Self-Diffusivity in Equilibrium Molecular Dynamics, J. Chem. Theory Comput., 2018, vol. 14, pp. 5959–5968; https://​doi.​org/​10.​1021/​acs.​jctc.​8b0062.​CrossRef
25.
go back to reference Jabbari, F., Rajabpour, A., and Saedodin, S., Viscosity of Carbon Nanotube/Water Nanofluid: Equilibrium Molecular Dynamics, J. Therm. An. Calorim., 2019, vol. 135, pp. 1787–1796; https://doi.org/10.1007/ s10973-018-7458-6.CrossRef Jabbari, F., Rajabpour, A., and Saedodin, S., Viscosity of Carbon Nanotube/Water Nanofluid: Equilibrium Molecular Dynamics, J. Therm. An. Calorim., 2019, vol. 135, pp. 1787–1796; https://​doi.​org/​10.​1007/​ s10973-018-7458-6.CrossRef
26.
go back to reference Mori, H., Statistical-Mechanical Theory of Transport in Fluids, Phys. Rev., 1958, vol. 112, pp. 1829–1842; https://doi.org/10.1103/PhysRev.112.1829.ADSMathSciNetCrossRefMATH Mori, H., Statistical-Mechanical Theory of Transport in Fluids, Phys. Rev., 1958, vol. 112, pp. 1829–1842; https://​doi.​org/​10.​1103/​PhysRev.​112.​1829.​ADSMathSciNetCrossRefMATH
27.
go back to reference Abou-Tayoun, N.H., Molecular Dynamics Simulation of Thermal Conductivity Enhancement of Copper-Water Nanofluid, 2012; http://hdl.handle.net/11073/2765. Abou-Tayoun, N.H., Molecular Dynamics Simulation of Thermal Conductivity Enhancement of Copper-Water Nanofluid, 2012; http://​hdl.​handle.​net/​11073/​2765.​
28.
go back to reference Zhao, Z., Sun, C., and Zhou, R., Thermal Conductivity of Confined-Water in Graphene Nanochannels, Int. J. Heat Mass Transfer, 2020, vol. 152; https://doi.org/10.1016/j.ijheatmasstransfer.2020.119502.CrossRef Zhao, Z., Sun, C., and Zhou, R., Thermal Conductivity of Confined-Water in Graphene Nanochannels, Int. J. Heat Mass Transfer, 2020, vol. 152; https://​doi.​org/​10.​1016/​j.​ijheatmasstransf​er.​2020.​119502.​CrossRef
29.
go back to reference Ghasemi, M., Niknejadi, M., and Toghraie, D., Direct Effect of Nanoparticles on the Thermal Conductivity of CuO-Water Nanofluid in a Phase Transition Phenomenon Using Molecular Dynamics Simulation, J. Therm. An. Calorim., 2021; https://doi.org/10.1007/s10973-020-10453-z.CrossRef Ghasemi, M., Niknejadi, M., and Toghraie, D., Direct Effect of Nanoparticles on the Thermal Conductivity of CuO-Water Nanofluid in a Phase Transition Phenomenon Using Molecular Dynamics Simulation, J. Therm. An. Calorim., 2021; https://​doi.​org/​10.​1007/​s10973-020-10453-z.​CrossRef
30.
go back to reference Ju, L., Basics of Thermal Conductivity Calculations, 1995; http://li.mit.edu/Archive/Papers/95/ Li95.pdf. Ju, L., Basics of Thermal Conductivity Calculations, 1995; http://​li.​mit.​edu/​Archive/​Papers/​95/​ Li95.pdf.
31.
go back to reference Zhang, M., Lussetti, E., De Souza, L.E.S., and Müller-Plathe, F., Thermal Conductivities of Molecular Liquids by Reverse Nonequilibrium Molecular Dynamics, J. Phys. Chem. B., 2005, vol. 109, pp. 15060–15067; https://doi.org/10.1021/jp0512255.CrossRef Zhang, M., Lussetti, E., De Souza, L.E.S., and Müller-Plathe, F., Thermal Conductivities of Molecular Liquids by Reverse Nonequilibrium Molecular Dynamics, J. Phys. Chem. B., 2005, vol. 109, pp. 15060–15067; https://​doi.​org/​10.​1021/​jp0512255.​CrossRef
32.
go back to reference Jabbari, F., Rajabpour, A., and Saedodin, S., Thermal Conductivity and Viscosity of Nanofluids: A Review of Recent Molecular Dynamics Studies, Chem. Eng. Sci., 2017, vol. 174, pp. 67–81; https://doi.org/10.1016/ j.ces.2017.08.034.ADSCrossRef Jabbari, F., Rajabpour, A., and Saedodin, S., Thermal Conductivity and Viscosity of Nanofluids: A Review of Recent Molecular Dynamics Studies, Chem. Eng. Sci., 2017, vol. 174, pp. 67–81; https://​doi.​org/​10.​1016/​ j.ces.2017.08.034.ADSCrossRef
33.
go back to reference Abu-Hamdeh, N.H., Almatrafi, E., Hekmatifar, M., Toghraie, D., and Golmohammadzadeh, A., Molecular Dynamics Simulation of the Thermal Properties of the Cu-Water Nanofluid on a Roughed Platinum Surface: Simulation of Phase Transition in Nanofluids, J. Mol. Liq., 2020; https://doi.org/10.1016/ j.molliq.2020.114832.CrossRef Abu-Hamdeh, N.H., Almatrafi, E., Hekmatifar, M., Toghraie, D., and Golmohammadzadeh, A., Molecular Dynamics Simulation of the Thermal Properties of the Cu-Water Nanofluid on a Roughed Platinum Surface: Simulation of Phase Transition in Nanofluids, J. Mol. Liq., 2020; https://​doi.​org/​10.​1016/​ j.molliq.2020.114832.CrossRef
34.
go back to reference Bresme, F. and Römer, F., Heat Transport in Liquid Water at Extreme Pressures: A Non Equilibrium Molecular Dynamics Study, J. Mol. Liq., 2013, vol. 185, pp. 1–7; https://doi.org/10.1016/j.molliq.2012.09.013.CrossRef Bresme, F. and Römer, F., Heat Transport in Liquid Water at Extreme Pressures: A Non Equilibrium Molecular Dynamics Study, J. Mol. Liq., 2013, vol. 185, pp. 1–7; https://​doi.​org/​10.​1016/​j.​molliq.​2012.​09.​013.​CrossRef
35.
go back to reference Tsimpanogiannis, I.N., Moultos, O.A., Franco, L.F.M., de M. Spera, M.B., Erdös, M., and Economou, I.G., Self-Diffusion Coefficient of Bulk and Confined Water: A Critical Review of Classical Molecular Simulation Studies, Mol. Simul., 2019, vol. 45, pp. 425–453; https://doi.org/10.1080/08927022.2018.1511903.CrossRef Tsimpanogiannis, I.N., Moultos, O.A., Franco, L.F.M., de M. Spera, M.B., Erdös, M., and Economou, I.G., Self-Diffusion Coefficient of Bulk and Confined Water: A Critical Review of Classical Molecular Simulation Studies, Mol. Simul., 2019, vol. 45, pp. 425–453; https://​doi.​org/​10.​1080/​08927022.​2018.​1511903.​CrossRef
36.
go back to reference Jamali, S.H., Wolff, L., Becker, T.M., Bardow, A., Vlugt, T.J.H., and Moultos, O.A., Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics, J. Chem. Theory Comput., 2018, vol. 14, pp. 2667–2677; https://doi.org/10.1021/acs.jctc.8b00170.CrossRef Jamali, S.H., Wolff, L., Becker, T.M., Bardow, A., Vlugt, T.J.H., and Moultos, O.A., Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics, J. Chem. Theory Comput., 2018, vol. 14, pp. 2667–2677; https://​doi.​org/​10.​1021/​acs.​jctc.​8b00170.​CrossRef
37.
go back to reference Pouramini, Z., Mohebbi, A., and Kowsari, M.H., Atomistic Insights into the Thermodynamics, Structure, and Dynamics of Ionic Liquid 1-hexyl-3-methylimidazolium Hexafluorophosphate via Molecular Dynamics Study, J. Mol. Liq., 2017, vol. 246, pp. 39–47; https://doi.org/10.1016/j.molliq.2017.09.043.CrossRef Pouramini, Z., Mohebbi, A., and Kowsari, M.H., Atomistic Insights into the Thermodynamics, Structure, and Dynamics of Ionic Liquid 1-hexyl-3-methylimidazolium Hexafluorophosphate via Molecular Dynamics Study, J. Mol. Liq., 2017, vol. 246, pp. 39–47; https://​doi.​org/​10.​1016/​j.​molliq.​2017.​09.​043.​CrossRef
38.
go back to reference Srivastava, A., Malik, S., and Debnath, A., Heterogeneity in Structure and Dynamics of Water near Bilayers Using TIP3P and TIP4P/2005 Water Models, Chem. Phys., 2019, vol. 525, p. 110396; https://doi.org/ 10.1016/j.chemphys.2019.110396.CrossRef Srivastava, A., Malik, S., and Debnath, A., Heterogeneity in Structure and Dynamics of Water near Bilayers Using TIP3P and TIP4P/2005 Water Models, Chem. Phys., 2019, vol. 525, p. 110396; https://​doi.​org/​ 10.1016/j.chemphys.2019.110396.CrossRef
39.
go back to reference Holz, M., Heil, S.R., and Sacco, A., Temperature-Dependent Self-Diffusion Coefficients of Water and Six Selected Molecular Liquids for Calibration in Accurate 1H NMR PFG Measurements, Phys. Chem. Chem. Phys. 2, 2000, vol. 4740–4742; https://doi.org/10.1039/b005319h.CrossRef Holz, M., Heil, S.R., and Sacco, A., Temperature-Dependent Self-Diffusion Coefficients of Water and Six Selected Molecular Liquids for Calibration in Accurate 1H NMR PFG Measurements, Phys. Chem. Chem. Phys. 2, 2000, vol. 4740–4742; https://​doi.​org/​10.​1039/​b005319h.​CrossRef
40.
go back to reference Korson, L., Drost-Hansen, W., and Millero, F.J., Viscosity of Water at Various Temperatures, J. Phys. Chem., 1969, vol. 73, pp. 34–39; https://doi.org/10.1021/j100721a006.CrossRef Korson, L., Drost-Hansen, W., and Millero, F.J., Viscosity of Water at Various Temperatures, J. Phys. Chem., 1969, vol. 73, pp. 34–39; https://​doi.​org/​10.​1021/​j100721a006.​CrossRef
41.
go back to reference Haynes, W.M., CRC Handbook of Chemistry and Physics, 95th ed. ( Internet Version 2015), 2015. Haynes, W.M., CRC Handbook of Chemistry and Physics, 95th ed. ( Internet Version 2015), 2015.
Metadata
Title
A Comparative Study of TIP4P-2005, SPC/E, SPC, and TIP3P-Ew Models for Predicting Water Transport Coefficients Using EMD and NEMD Simulations
Authors
H. Dorrani
A. Mohebbi
Publication date
01-03-2023
Publisher
Pleiades Publishing
Published in
Journal of Engineering Thermophysics / Issue 1/2023
Print ISSN: 1810-2328
Electronic ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232823010113

Other articles of this Issue 1/2023

Journal of Engineering Thermophysics 1/2023 Go to the issue

Premium Partners