Skip to main content
Top
Published in: Flow, Turbulence and Combustion 3-4/2017

11-08-2017

A Comparison of Strategies for Direct Numerical Simulation of Turbulence Chemistry Interaction in Generic Planar Turbulent Premixed Flames

Authors: Markus Klein, Nilanjan Chakraborty, Sebastian Ketterl

Published in: Flow, Turbulence and Combustion | Issue 3-4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Three different methods to introduce turbulence in the computational domain of Direct Numerical Simulations (DNS) of statistically planar turbulent premixed flame configurations have been reviewed and their advantages and disadvantages in terms of run time, natural flame development, control of turbulence parameters and convergence of statistics extracted from the simulations have been discussed in detail. It has been found that there is no method, which is clearly superior to the other two alternative methods. An analysis has been performed to explain why Lundgren’s physical space linear forcing results in an integral length scale which is, independent of the Reynolds number, a constant fraction of the domain size. Furthermore, an evolution equation for the integral length scale has been derived, and a scaling analysis of its terms has been performed to explain the evolution of the integral length scale in the context of Lundgren’s physical space linear forcing. Finally, a modification to Lundgren’s forcing approach has been suggested which ensures that the integral length scale settles to a predetermined value so that DNS of statistically planar turbulent premixed flames with physical space forcing can be conducted for prescribed values of Damköhler and Karlovitz numbers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Trouvé, A.: The production of premixed flame surface area in turbulent shear flow. Combust. Flame 99, 687–696 (1994)CrossRef Trouvé, A.: The production of premixed flame surface area in turbulent shear flow. Combust. Flame 99, 687–696 (1994)CrossRef
2.
go back to reference Chakraborty, N., Klein, M., Cant, R.S.: Effects of turbulent reynolds number on the displacement speed statistics in the thin reaction zones regime of turbulent premixed combustion. J. Combust. 2011, Article ID 473679 (2011) Chakraborty, N., Klein, M., Cant, R.S.: Effects of turbulent reynolds number on the displacement speed statistics in the thin reaction zones regime of turbulent premixed combustion. J. Combust. 2011, Article ID 473679 (2011)
3.
go back to reference Han, I., Huh, K.Y.: Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame 152, 194–205 (2008)CrossRef Han, I., Huh, K.Y.: Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame 152, 194–205 (2008)CrossRef
4.
go back to reference Kim, S.H., Pitsch, H.: Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluids 19, 115114 (2007)MATH Kim, S.H., Pitsch, H.: Scalar gradient and small-scale structure in turbulent premixed combustion. Phys. Fluids 19, 115114 (2007)MATH
5.
go back to reference Rogallo, R.S.: Numerical Experiments in Homogeneous Turbulence, NASA Technical Memorandum, vol. 81315. NASA Ames Research Center, California (1981) Rogallo, R.S.: Numerical Experiments in Homogeneous Turbulence, NASA Technical Memorandum, vol. 81315. NASA Ames Research Center, California (1981)
6.
go back to reference Rutland, C.J., Cant, R.S.: Turbulent transport in premixed flames.. In: Proceedings of Summer Program, Center for Turbulence Research, pp. 75–94 (1994) Rutland, C.J., Cant, R.S.: Turbulent transport in premixed flames.. In: Proceedings of Summer Program, Center for Turbulence Research, pp. 75–94 (1994)
7.
go back to reference Nishiki, S., Hasegawa, T., Borghi, R., Himeno, R.: Modelling of turbulent scalar flux in turbulent premixed flames based on DNS databases. Combust. Theor. Model. 10(1), 39–55 (2006)CrossRefMATH Nishiki, S., Hasegawa, T., Borghi, R., Himeno, R.: Modelling of turbulent scalar flux in turbulent premixed flames based on DNS databases. Combust. Theor. Model. 10(1), 39–55 (2006)CrossRefMATH
8.
go back to reference Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame 137, 129–147 (2004)CrossRef Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame 137, 129–147 (2004)CrossRef
9.
go back to reference Aspden, A.J., Day, M. S., Bell, J.B.: Turbulence-flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J. Fluid Mech. 680, 287–320 (2011)CrossRefMATH Aspden, A.J., Day, M. S., Bell, J.B.: Turbulence-flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J. Fluid Mech. 680, 287–320 (2011)CrossRefMATH
10.
go back to reference Poludnenko, A.Y., Oran, E.S: The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust. Flame 157, 995–1011 (2010)CrossRef Poludnenko, A.Y., Oran, E.S: The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust. Flame 157, 995–1011 (2010)CrossRef
11.
go back to reference Savard, B., Blanquart, G.: Broken reaction zone and differential diffusion effects in high Karlovitz n-C7H16 premixed turbulent flames. Combust. Flame 162, 2020–2033 (2015)CrossRef Savard, B., Blanquart, G.: Broken reaction zone and differential diffusion effects in high Karlovitz n-C7H16 premixed turbulent flames. Combust. Flame 162, 2020–2033 (2015)CrossRef
12.
go back to reference Lundgren, T.: Linear Forced Isotropic Turbulence in Annual Research Briefs. Center for Turbulence Research, Stanford, pp. 461–473 (2003) Lundgren, T.: Linear Forced Isotropic Turbulence in Annual Research Briefs. Center for Turbulence Research, Stanford, pp. 461–473 (2003)
13.
go back to reference Rosales, C, Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17, 095106 (2005)MathSciNetCrossRefMATH Rosales, C, Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17, 095106 (2005)MathSciNetCrossRefMATH
14.
go back to reference Carroll, P.L., Blanquart, G.: A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25, 105114 (2013)CrossRef Carroll, P.L., Blanquart, G.: A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25, 105114 (2013)CrossRef
15.
go back to reference Carroll, P.L., Blanquart, G.: The effect of velocity field forcing techniques on the Karman–Howarth equation. J. Turbul. 15, 429–448 (2014)MathSciNetCrossRef Carroll, P.L., Blanquart, G.: The effect of velocity field forcing techniques on the Karman–Howarth equation. J. Turbul. 15, 429–448 (2014)MathSciNetCrossRef
16.
go back to reference Jenkins, K.W., Klein, M., Chakraborty, N., Cant, R.S: Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin-reaction-zones regime. Combust. Flame 145, 415–434 (2006)CrossRef Jenkins, K.W., Klein, M., Chakraborty, N., Cant, R.S: Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin-reaction-zones regime. Combust. Flame 145, 415–434 (2006)CrossRef
17.
go back to reference Chakraborty, N., Klein, M., Cant, R.S.: Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst. 31, 1385–1392 (2007)CrossRef Chakraborty, N., Klein, M., Cant, R.S.: Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst. 31, 1385–1392 (2007)CrossRef
18.
go back to reference Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comp. Physics 186, 652–665 (2003)CrossRefMATH Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comp. Physics 186, 652–665 (2003)CrossRefMATH
19.
go back to reference Chakraborty, N., Cant, R.S.: Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame 158, 1768–1787 (2011)CrossRef Chakraborty, N., Cant, R.S.: Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame 158, 1768–1787 (2011)CrossRef
20.
go back to reference Chakraborty, N., Wang, L., Klein M.: Streamline segment statistics of premixed flames with nonunity Lewis numbers. Phys. Rev. E 89, 033015 (2014)CrossRef Chakraborty, N., Wang, L., Klein M.: Streamline segment statistics of premixed flames with nonunity Lewis numbers. Phys. Rev. E 89, 033015 (2014)CrossRef
21.
go back to reference Matalon, M., Matkowsky, B.J.: Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239–259 (1982)CrossRefMATH Matalon, M., Matkowsky, B.J.: Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239–259 (1982)CrossRefMATH
22.
go back to reference Chaudhuri, S., Akkerman, V., Law, C.K.: Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84, 026322 (2011)CrossRef Chaudhuri, S., Akkerman, V., Law, C.K.: Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84, 026322 (2011)CrossRef
23.
go back to reference Denet, B., Haldenwang, P.: A numerical study of premixed flames Darrieus-landau instability. Combust. Sci. Tech. 104, 143–167 (1995)CrossRef Denet, B., Haldenwang, P.: A numerical study of premixed flames Darrieus-landau instability. Combust. Sci. Tech. 104, 143–167 (1995)CrossRef
24.
go back to reference Tennekes, H, Lumley, J.L.: A First Course in Turbulence, 1st edn. MIT Press, Cambridge (1972) Tennekes, H, Lumley, J.L.: A First Course in Turbulence, 1st edn. MIT Press, Cambridge (1972)
25.
go back to reference Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Compos. Mater. 5, 329–359 (1996)MathSciNetMATH Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Compos. Mater. 5, 329–359 (1996)MathSciNetMATH
27.
go back to reference Wacks, D.H., Chakraborty, N., Klein, M., Arias, P.G., Im, H.G.: Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis. Phys. Rev. Fluids 1, 083401 (2016)CrossRef Wacks, D.H., Chakraborty, N., Klein, M., Arias, P.G., Im, H.G.: Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis. Phys. Rev. Fluids 1, 083401 (2016)CrossRef
28.
go back to reference Ashurst, W., Kerstein, A., Kerr, R.M., Gibson, C.H.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids A 30, 2343 (1987)CrossRef Ashurst, W., Kerstein, A., Kerr, R.M., Gibson, C.H.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids A 30, 2343 (1987)CrossRef
30.
go back to reference Jimenez, J.: Kinematic alignment effects in turbulent flows. Phys. Fluids A 4, 652 (1992)CrossRef Jimenez, J.: Kinematic alignment effects in turbulent flows. Phys. Fluids A 4, 652 (1992)CrossRef
31.
go back to reference Batchelor, G., Townsend, A.: The nature of turbulent motion at large wave-numbers. In: Proceedings of the Royal Society of London A: Mathematical, 240 Physical and Engineering Sciences, volume 199, The Royal Society, pp. 238–255 (1949) Batchelor, G., Townsend, A.: The nature of turbulent motion at large wave-numbers. In: Proceedings of the Royal Society of London A: Mathematical, 240 Physical and Engineering Sciences, volume 199, The Royal Society, pp. 238–255 (1949)
32.
go back to reference Monin, A.S., Yaglom, A.M.: Statistical Fluid mechanics, volume II: Mechanics of turbulence, volume 2. Courier Corporation (2013) Monin, A.S., Yaglom, A.M.: Statistical Fluid mechanics, volume II: Mechanics of turbulence, volume 2. Courier Corporation (2013)
33.
go back to reference She, Z.-S., Jackson, E., Orszag, S.A.: Scale-dependent intermittency and coherence in turbulence. J. Sci. Comput. 3, 407–434 (1988)CrossRefMATH She, Z.-S., Jackson, E., Orszag, S.A.: Scale-dependent intermittency and coherence in turbulence. J. Sci. Comput. 3, 407–434 (1988)CrossRefMATH
34.
go back to reference Yamamoto, K., Kambe, T.: Gaussian and near-exponential probability distributions of turbulence obtained from a numerical simulation. Fluid Dyn. Res. 8, 65–72 (1991)CrossRef Yamamoto, K., Kambe, T.: Gaussian and near-exponential probability distributions of turbulence obtained from a numerical simulation. Fluid Dyn. Res. 8, 65–72 (1991)CrossRef
35.
go back to reference Mallouppas, G., George, W.K., van Wachem, B.G.M.: New forcing scheme to sustain particle-laden homogeneous and isotropic turbulence. Phys. Fluids 25, 083304 (2013)CrossRef Mallouppas, G., George, W.K., van Wachem, B.G.M.: New forcing scheme to sustain particle-laden homogeneous and isotropic turbulence. Phys. Fluids 25, 083304 (2013)CrossRef
36.
go back to reference Eswaran, V., Pope, S.B.: An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257–278 (1988)CrossRefMATH Eswaran, V., Pope, S.B.: An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257–278 (1988)CrossRefMATH
Metadata
Title
A Comparison of Strategies for Direct Numerical Simulation of Turbulence Chemistry Interaction in Generic Planar Turbulent Premixed Flames
Authors
Markus Klein
Nilanjan Chakraborty
Sebastian Ketterl
Publication date
11-08-2017
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 3-4/2017
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9843-9

Other articles of this Issue 3-4/2017

Flow, Turbulence and Combustion 3-4/2017 Go to the issue

Premium Partners