Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 7-8/2021

14-07-2021 | Review Article

A comprehensive survey on non-invasive wearable bladder volume monitoring systems

Authors: Morteza Zakeri Nasrabadi, Hamideh Tabibi, Mahsa Salmani, Mahdieh Torkashvand, Eisa Zarepour

Published in: Medical & Biological Engineering & Computing | Issue 7-8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Measuring the volume of urine in the bladder is a significant issue in patients who suffer from the lack of bladder fullness sensation or have problems with timeliness getting to the restroom, such as spinal cord injury patients and some of the elderlies. Real-time monitoring of the bladder, therefore, can be highly helpful for urinary incontinence. Bladder volume monitoring technologies can be divided into two distinct categories of invasive and non-invasive. In invasive techniques, a catheter is directly inserted into the urethra to measure the amount of urine accurately. However, it is painful, limits the user’s ordinary movements, and may hurt the urinary tract. Current non-invasive techniques measure the volume of the bladder from the skin using different stationary or portable apparatus at health centers. Both techniques have difficulties and are not cost-effective to use for a long period. Recently, both invasive and non-invasive methods have been attempted to be produced in the form of wearable devices utilizing different sensing and communication technologies. Wearable bladder monitoring devices can be easily used by patients with no or few clinical steps, making them much more affordable than non-wearable devices. While wearable devices seem to be a highly convenient and effective solution, they suffer from few drawbacks, such as relatively low precision. Hence, a great number of studies have been conducted to address these issues. In this article, we review and discuss non-invasive and minimally invasive methods for monitoring the bladder volume. We focus on the most practical and state-of-the-art methods employed in wearable devices, classify them by engineering and medical characteristics, and investigate their specifications, architectures, and measurement algorithms. This study aims to introduce the latest advances in this field to practitioners while comparing the advantages and disadvantages of existing approaches. Our study concludes with open problems and future trends in the area of bladder monitoring and measurement systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Abrahams AC, Dendooven A, van der Veer JW, Wientjes R, Toorop RJ, Bleys RL, Hendrickx AP, van Leeuwen MS, de Lussanet QG, Verhaar MC, Stapper G, Nguyen TQ (2019) Direct comparison of the thickness of the parietal peritoneum using peritoneal biopsy and ultrasonography of the abdominal wall in patients treated with peritoneal dialysis. Perit Dial Int J Int Soc Perit Dial 39(5):455–464. https://doi.org/10.3747/pdi.2018.00108CrossRef Abrahams AC, Dendooven A, van der Veer JW, Wientjes R, Toorop RJ, Bleys RL, Hendrickx AP, van Leeuwen MS, de Lussanet QG, Verhaar MC, Stapper G, Nguyen TQ (2019) Direct comparison of the thickness of the parietal peritoneum using peritoneal biopsy and ultrasonography of the abdominal wall in patients treated with peritoneal dialysis. Perit Dial Int J Int Soc Perit Dial 39(5):455–464. https://​doi.​org/​10.​3747/​pdi.​2018.​00108CrossRef
14.
go back to reference Christ A, Kainz W, Hahn EG, Honegger K, Zefferer M, Neufeld E, Rascher W, Janka R, Bautz W, Chen J, Kiefer B, Schmitt P, Hollenbach HP, Shen J, Oberle M, Szczerba D, Kam A, Guag JW, Kuster N (2010) The virtual family—development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol 55(2):N23–N38. https://doi.org/10.1088/0031-9155/55/2/N01PubMedCrossRef Christ A, Kainz W, Hahn EG, Honegger K, Zefferer M, Neufeld E, Rascher W, Janka R, Bautz W, Chen J, Kiefer B, Schmitt P, Hollenbach HP, Shen J, Oberle M, Szczerba D, Kam A, Guag JW, Kuster N (2010) The virtual family—development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol 55(2):N23–N38. https://​doi.​org/​10.​1088/​0031-9155/​55/​2/​N01PubMedCrossRef
20.
go back to reference Drake RL, Vogl AW, Mitchell AWM (2020) Gray’s anatomy for students fourth edi edn Drake RL, Vogl AW, Mitchell AWM (2020) Gray’s anatomy for students fourth edi edn
24.
go back to reference Fong D, Alcantar AV, Gupta P, Kurzrock E, Ghiasi S (2018) Non-invasive bladder volume sensing for neurogenic bladder dysfunction management. In: 2018 IEEE 15th International conference on wearable and implantable body sensor networks (BSN), pp 82–85. https://doi.org/10.1109/BSN.2018.8329664 Fong D, Alcantar AV, Gupta P, Kurzrock E, Ghiasi S (2018) Non-invasive bladder volume sensing for neurogenic bladder dysfunction management. In: 2018 IEEE 15th International conference on wearable and implantable body sensor networks (BSN), pp 82–85. https://​doi.​org/​10.​1109/​BSN.​2018.​8329664
32.
go back to reference Gupta P (2018) Nirs based bladder volume sensing for patients suffering with neurogenic bladder dysfunction. M.Sc, Thesis, University of California Gupta P (2018) Nirs based bladder volume sensing for patients suffering with neurogenic bladder dysfunction. M.Sc, Thesis, University of California
36.
go back to reference Harikrishnan R, Keerthini S, Varshan SV, Rahul R (2019) Iot based system design for detecting urinary bladder level. In: Inter national level conference, vol 6, pp 2017–2020 Harikrishnan R, Keerthini S, Varshan SV, Rahul R (2019) Iot based system design for detecting urinary bladder level. In: Inter national level conference, vol 6, pp 2017–2020
44.
go back to reference Jeyalakshmi MS, Engineering B, Of J (2018) Wearable system design for detecting urinary bladder fullness. Int J Pure Appl Math 119(15):2183–2189 Jeyalakshmi MS, Engineering B, Of J (2018) Wearable system design for detecting urinary bladder fullness. Int J Pure Appl Math 119(15):2183–2189
45.
go back to reference Kauppinen P, Hyttinen J, Malmivuo J (2006) Sensitivity distribution visualizations of impedance tomography measurement strategies. International Journal of Bioelectromagnetism 8 VII/1 – VII/9 Kauppinen P, Hyttinen J, Malmivuo J (2006) Sensitivity distribution visualizations of impedance tomography measurement strategies. International Journal of Bioelectromagnetism 8 VII/1 – VII/9
47.
go back to reference Kim MK, Kim H, Jung YS, Adem KMA, Bawazir SS, Stefanini C, Lee HJ (2017) Implantable bladder volume sensor based on resistor ladder network composed of conductive hydrogel composite. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 1732–1735. https://doi.org/10.1109/EMBC.2017.8037177 Kim MK, Kim H, Jung YS, Adem KMA, Bawazir SS, Stefanini C, Lee HJ (2017) Implantable bladder volume sensor based on resistor ladder network composed of conductive hydrogel composite. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 1732–1735. https://​doi.​org/​10.​1109/​EMBC.​2017.​8037177
51.
go back to reference Krewer F, Morgan F, Jones E, Glavin M, O’Halloran M (2014) Development of a wearable microwave bladder monitor for the management and treatment of urinary incontinence. In: Ranney KI, Doerry A (eds) Radar Sensor Technology XVIII, p 90770X. https://doi.org/10.1117/12.2049689 Krewer F, Morgan F, Jones E, Glavin M, O’Halloran M (2014) Development of a wearable microwave bladder monitor for the management and treatment of urinary incontinence. In: Ranney KI, Doerry A (eds) Radar Sensor Technology XVIII, p 90770X. https://​doi.​org/​10.​1117/​12.​2049689
61.
66.
go back to reference Lu X, Soh CK, Avvari PV (2015) Lamb wave propagation in vibrating structures for effective health monitoring. In: Kundu T. (ed) Health monitoring of structural and biological systems 2015, vol 9438, pp 445–454 International Society for Optics and Photonics, SPIE. https://doi.org/10.1117/12.2083931 Lu X, Soh CK, Avvari PV (2015) Lamb wave propagation in vibrating structures for effective health monitoring. In: Kundu T. (ed) Health monitoring of structural and biological systems 2015, vol 9438, pp 445–454 International Society for Optics and Photonics, SPIE. https://​doi.​org/​10.​1117/​12.​2083931
70.
go back to reference McMorrow G, Baartmans H, Bom N, Lancee C (2005) Instantaneous ultrasonic echo measurement of bladder volume with a limited number of ultrasound beams McMorrow G, Baartmans H, Bom N, Lancee C (2005) Instantaneous ultrasonic echo measurement of bladder volume with a limited number of ultrasound beams
72.
go back to reference Merks EJ (2009) Instantaneous ultrasonic assessment of urinary bladder volume. Cost Effectiveness and Resource Allocation - Cost Eff Resour Alloc Merks EJ (2009) Instantaneous ultrasonic assessment of urinary bladder volume. Cost Effectiveness and Resource Allocation - Cost Eff Resour Alloc
78.
82.
go back to reference Palla A, Rossi S, Fanucci L (2015) Bioimpedance based monitoring system for people with neurogenic dysfunction of the urinary bladder. Stud Health Technol Inf 217:892–6 Palla A, Rossi S, Fanucci L (2015) Bioimpedance based monitoring system for people with neurogenic dysfunction of the urinary bladder. Stud Health Technol Inf 217:892–6
91.
98.
go back to reference Shin SC, Moon J, Kye S, Lee K, Lee YS, Kang HG (2017) Continuous bladder volume monitoring system for wearable applications. In: 2017 39th Annual international conference of the ieee engineering in medicine and biology society (EMBC), vol M, pp 4435–4438. IEEE. https://doi.org/10.1109/EMBC.2017.8037840 Shin SC, Moon J, Kye S, Lee K, Lee YS, Kang HG (2017) Continuous bladder volume monitoring system for wearable applications. In: 2017 39th Annual international conference of the ieee engineering in medicine and biology society (EMBC), vol M, pp 4435–4438. IEEE. https://​doi.​org/​10.​1109/​EMBC.​2017.​8037840
99.
go back to reference Stauffer F, Zhang Q, Tybrandt K, Llerena Zambrano B, Hengsteler J, Stoll A, Trüeb C, Hagander M, Sujata JM, Hoffmann F, Schuurmans Stekhoven J, Quack J, Zilly H, Goedejohann J, Schneider MP, Kessler TM, Taylor WR, Küng R, Vörös J (2018) Soft electronic strain sensor with chipless wireless readout: toward real-time monitoring of bladder volume. Adv Mater Technol 3 (6):1800031. https://doi.org/10.1002/admt.201800031CrossRef Stauffer F, Zhang Q, Tybrandt K, Llerena Zambrano B, Hengsteler J, Stoll A, Trüeb C, Hagander M, Sujata JM, Hoffmann F, Schuurmans Stekhoven J, Quack J, Zilly H, Goedejohann J, Schneider MP, Kessler TM, Taylor WR, Küng R, Vörös J (2018) Soft electronic strain sensor with chipless wireless readout: toward real-time monitoring of bladder volume. Adv Mater Technol 3 (6):1800031. https://​doi.​org/​10.​1002/​admt.​201800031CrossRef
108.
go back to reference Weaver JN, Alspaugh JC, Behkam B (2010) Toward a minimally invasive bladder pressure monitoring system: model bladder for in vitro testing. In: 2010 3rd IE EE RAS & EMBS international conference on biomedical robotics and biomechatronics, pp 638–643. IEEE. https://doi.org/10.1109/BIOROB.2010.5625981 Weaver JN, Alspaugh JC, Behkam B (2010) Toward a minimally invasive bladder pressure monitoring system: model bladder for in vitro testing. In: 2010 3rd IE EE RAS & EMBS international conference on biomedical robotics and biomechatronics, pp 638–643. IEEE. https://​doi.​org/​10.​1109/​BIOROB.​2010.​5625981
Metadata
Title
A comprehensive survey on non-invasive wearable bladder volume monitoring systems
Authors
Morteza Zakeri Nasrabadi
Hamideh Tabibi
Mahsa Salmani
Mahdieh Torkashvand
Eisa Zarepour
Publication date
14-07-2021
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 7-8/2021
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-021-02395-x

Other articles of this Issue 7-8/2021

Medical & Biological Engineering & Computing 7-8/2021 Go to the issue

Premium Partner