Skip to main content
Top
Published in: Autonomous Robots 8/2019

02-07-2019

A constrained instantaneous learning approach for aerial package delivery robots: onboard implementation and experimental results

Authors: Mohit Mehndiratta, Erdal Kayacan

Published in: Autonomous Robots | Issue 8/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rather than utilizing a sophisticated robot which is trained—and tuned—for a scenario in a specific environment perfectly, most people are interested in seeing robots operating in various conditions where they have never been trained before. In accordance with the goal of utilizing aerial robots for daily operations in real application scenarios, an aerial robot must learn from its own experience and its interactions with the environment. This paper presents an instantaneous learning-based control approach for the precise trajectory tracking of a 3D-printed aerial robot which can adapt itself to the changing working conditions. Considering the fact that model-based controllers suffer from lack of modeling, parameter variations and disturbances in their working environment, we observe that the presented learning-based control method has a compelling ability to significantly reduce the tracking error under aforementioned uncertainties throughout the operation. Three case scenarios are considered: payload mass variations on an aerial robot for a package delivery problem, ground effect when the aerial robot is hovering/flying close to the ground, and wind-gust disturbances encountered in the outdoor environment. In each case study, parameter variations are learned using nonlinear moving horizon estimation (NMHE) method, and the estimated parameters are fed to the nonlinear model predictive controller (NMPC). Thanks to learning capability of the presented framework, the aerial robot can learn from its own experience, and react promptly—unlike iterative learning control which allows the system to improve tracking accuracy from repetition to repetition—to reduce the tracking error. Additionally, the fast C++ execution of NMPC and NMHE codes facilitates a complete onboard implementation of the proposed framework on a low-cost embedded processor.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Alexis, K., Papachristos, C., Siegwart, R., & Tzes, A. (2016). Robust model predictive flight control of unmanned rotorcrafts. Journal of Intelligent & Robotic Systems, 81(3), 443–469.CrossRef Alexis, K., Papachristos, C., Siegwart, R., & Tzes, A. (2016). Robust model predictive flight control of unmanned rotorcrafts. Journal of Intelligent & Robotic Systems, 81(3), 443–469.CrossRef
go back to reference Ariens, D., Houska, B., Ferreau, H., & Logist, F. (2010). ACADO: Toolkit for automatic control and dynamic optimization. Optimization in Engineering Center (OPTEC), 1st edn, http://www.acadotoolkit.org/, [Accessed June 28, 2019] Ariens, D., Houska, B., Ferreau, H., & Logist, F. (2010). ACADO: Toolkit for automatic control and dynamic optimization. Optimization in Engineering Center (OPTEC), 1st edn, http://​www.​acadotoolkit.​org/​, [Accessed June 28, 2019]
go back to reference Ataka, A., Tnunay, H., Inovan, R., Abdurrohman, M., Preastianto, H., Cahyadi, A. I., & Yamamoto, Y. (2013). Controllability and observability analysis of the gain scheduling based linearization for UAV quadrotor. In: 2013 International conference on robotics, biomimetics, intelligent computational systems, pp. 212–218, https://doi.org/10.1109/ROBIONETICS.2013.6743606 Ataka, A., Tnunay, H., Inovan, R., Abdurrohman, M., Preastianto, H., Cahyadi, A. I., & Yamamoto, Y. (2013). Controllability and observability analysis of the gain scheduling based linearization for UAV quadrotor. In: 2013 International conference on robotics, biomimetics, intelligent computational systems, pp. 212–218, https://​doi.​org/​10.​1109/​ROBIONETICS.​2013.​6743606
go back to reference Bouabdallah, S. (2007). Design and control of quadrotors with application to autonomous flying. Ph.D. Dissertation, EPFL. Bouabdallah, S. (2007). Design and control of quadrotors with application to autonomous flying. Ph.D. Dissertation, EPFL.
go back to reference Bouabdallah, S., Noth, A., & Siegwart, R. (2004). PID vs LQ control techniques applied to an indoor micro quadrotor. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS) (IEEE Cat. No.04CH37566), Vol. 3, pp. 2451–2456. Bouabdallah, S., Noth, A., & Siegwart, R. (2004). PID vs LQ control techniques applied to an indoor micro quadrotor. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS) (IEEE Cat. No.04CH37566), Vol.  3, pp. 2451–2456.
go back to reference Grúne, L. (2012). NMPC without terminal constraints. IFAC Proceedings Volumes, 45(17), 1–13.CrossRef Grúne, L. (2012). NMPC without terminal constraints. IFAC Proceedings Volumes, 45(17), 1–13.CrossRef
go back to reference Kayacan, E., Kayacan, E., Ramon, H., & Saeys, W. (2014a). Distributed nonlinear model predictive control of an autonomous tractor-trailer system. Mechatronics, 24(8), 926–933.CrossRef Kayacan, E., Kayacan, E., Ramon, H., & Saeys, W. (2014a). Distributed nonlinear model predictive control of an autonomous tractor-trailer system. Mechatronics, 24(8), 926–933.CrossRef
go back to reference Kayacan, E., Kayacan, E., Ramon, H., & Saeys, W. (2015a). Learning in centralized nonlinear model predictive control: Application to an autonomous tractor-trailer system. IEEE Transactions on Control Systems Technology, 23(1), 197–205.CrossRef Kayacan, E., Kayacan, E., Ramon, H., & Saeys, W. (2015a). Learning in centralized nonlinear model predictive control: Application to an autonomous tractor-trailer system. IEEE Transactions on Control Systems Technology, 23(1), 197–205.CrossRef
go back to reference Kayacan, E., Kayacan, E., Ramon, H., & Saeys, W. (2015b). Towards agrobots: Identification of the yaw dynamics and trajectory tracking of an autonomous tractor. Computers and Electronics in Agriculture, 115, 78–87.CrossRef Kayacan, E., Kayacan, E., Ramon, H., & Saeys, W. (2015b). Towards agrobots: Identification of the yaw dynamics and trajectory tracking of an autonomous tractor. Computers and Electronics in Agriculture, 115, 78–87.CrossRef
go back to reference Kraus, T., Ferreau, H., Kayacan, E., Ramon, H., Baerdemaeker, J. D., Diehl, M., et al. (2013). Moving horizon estimation and nonlinear model predictive control for autonomous agricultural vehicles. Computers and Electronics in Agriculture, 98, 25–33.CrossRef Kraus, T., Ferreau, H., Kayacan, E., Ramon, H., Baerdemaeker, J. D., Diehl, M., et al. (2013). Moving horizon estimation and nonlinear model predictive control for autonomous agricultural vehicles. Computers and Electronics in Agriculture, 98, 25–33.CrossRef
go back to reference Kühl, P., Diehl, M., Kraus, T., Schlöder, J. P., & Bock, H. G. (2011). A real-time algorithm for moving horizon state and parameter estimation. Computers & Chemical Engineering, 35(1), 71–83.CrossRef Kühl, P., Diehl, M., Kraus, T., Schlöder, J. P., & Bock, H. G. (2011). A real-time algorithm for moving horizon state and parameter estimation. Computers & Chemical Engineering, 35(1), 71–83.CrossRef
go back to reference Lee, W. Y. J., Mehndiratta, M., & Kayacan, E. (2018). Fly without borders with additive manufacturing: A microscale tilt-rotor tricopter design. In: Proceedings of the 3rd international conference on progress in additive manufacturing (Pro-AM 2018), pp. 256–261, https://doi.org/10.25341/D43K5G. Lee, W. Y. J., Mehndiratta, M., & Kayacan, E. (2018). Fly without borders with additive manufacturing: A microscale tilt-rotor tricopter design. In: Proceedings of the 3rd international conference on progress in additive manufacturing (Pro-AM 2018), pp. 256–261, https://​doi.​org/​10.​25341/​D43K5G.
go back to reference Li, B., Zhou, W., Sun, J., Wen, C., & Chen, C. (2018). Model predictive control for path tracking of a VTOL tailsitter UAV in an HIL simulation environment. In: 2018 AIAA modeling and simulation technologies conference, American Institute of Aeronautics and Astronautics, p. 1919. Li, B., Zhou, W., Sun, J., Wen, C., & Chen, C. (2018). Model predictive control for path tracking of a VTOL tailsitter UAV in an HIL simulation environment. In: 2018 AIAA modeling and simulation technologies conference, American Institute of Aeronautics and Astronautics, p. 1919.
go back to reference Mayne, D., Rawlings, J., Rao, C., & Scokaert, P. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36(6), 789–814.MathSciNetCrossRef Mayne, D., Rawlings, J., Rao, C., & Scokaert, P. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36(6), 789–814.MathSciNetCrossRef
go back to reference Mehndiratta, M., & Kayacan, E. (2018a). Online learning-based receding horizon control of tilt-rotor tricopter: A cascade implementation. In: 2018 American control conference (ACC), pp. 1–6. Mehndiratta, M., & Kayacan, E. (2018a). Online learning-based receding horizon control of tilt-rotor tricopter: A cascade implementation. In: 2018 American control conference (ACC), pp. 1–6.
go back to reference Nicolao, G. D., Magni, L., & Scattolini, R. (1998). Stabilizing receding-horizon control of nonlinear time-varying systems. IEEE Transactions on Automatic Control, 43(7), 1030–1036.MathSciNetCrossRef Nicolao, G. D., Magni, L., & Scattolini, R. (1998). Stabilizing receding-horizon control of nonlinear time-varying systems. IEEE Transactions on Automatic Control, 43(7), 1030–1036.MathSciNetCrossRef
go back to reference Qi, J., Song, D., Shang, H., Wang, N., Hua, C., Wu, C., et al. (2016). Search and rescue rotary-wing UAV and its application to the Lushan Ms 7.0 earthquake. Journal of Field Robotics, 33(3), 290–321.CrossRef Qi, J., Song, D., Shang, H., Wang, N., Hua, C., Wu, C., et al. (2016). Search and rescue rotary-wing UAV and its application to the Lushan Ms 7.0 earthquake. Journal of Field Robotics, 33(3), 290–321.CrossRef
go back to reference Vukov, M., Gros, S., Horn, G., Frison, G., Geebelen, K., Jørgensen, J., et al. (2015). Real-time nonlinear MPC and MHE for a large-scale mechatronic application. Control Engineering Practice, 45, 64–78.CrossRef Vukov, M., Gros, S., Horn, G., Frison, G., Geebelen, K., Jørgensen, J., et al. (2015). Real-time nonlinear MPC and MHE for a large-scale mechatronic application. Control Engineering Practice, 45, 64–78.CrossRef
Metadata
Title
A constrained instantaneous learning approach for aerial package delivery robots: onboard implementation and experimental results
Authors
Mohit Mehndiratta
Erdal Kayacan
Publication date
02-07-2019
Publisher
Springer US
Published in
Autonomous Robots / Issue 8/2019
Print ISSN: 0929-5593
Electronic ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-019-09875-y

Other articles of this Issue 8/2019

Autonomous Robots 8/2019 Go to the issue