Skip to main content
Top

2020 | OriginalPaper | Chapter

A Deep Learning Based Fault Detection Method for Rocket Launcher Electrical System

Authors : Huanghua Li, Zhidong Deng, Jianxin Zhang, Zhen Zhang, Xiaozhao Wang, Yongbao Li, Feng Li, Lizhong Xie

Published in: Machine Learning, Optimization, and Data Science

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper proposes a fault detection method for a rocket launcher electrical system by using 1D convolutional neural network. Compared with the method based on analysis of mechanism model and the method based on knowledge, this end-to-end data-driven fault detection method, which only relies on the rich data generated during the running of the system, has the ability of automatic extraction of hierarchical features. The experimental results show that the 1D convolutional neural network designed in this paper achieves the accuracy of 98.66% in the practical fault detection for a rocket electrical system, which is improved by 29% and 13% higher than the traditional fully connected shallow neural network and support vector machine, respectively, which further verifies the feasibility and effectiveness of data-driven deep learning method in fault detection applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Moseler, O., Isermann, R.: Application of model-based fault detection to a brushless DC motor. IEEE Trans. Industr. Electron. 47(5), 1015–1020 (2000)CrossRef Moseler, O., Isermann, R.: Application of model-based fault detection to a brushless DC motor. IEEE Trans. Industr. Electron. 47(5), 1015–1020 (2000)CrossRef
2.
go back to reference Visinsky, M.L., Cavallaro, J.R., Walker, I.D.: Expert system framework for fault detection and fault tolerance in robotics. Comput. Electr. Eng. 20(5), 421–435 (1994)CrossRef Visinsky, M.L., Cavallaro, J.R., Walker, I.D.: Expert system framework for fault detection and fault tolerance in robotics. Comput. Electr. Eng. 20(5), 421–435 (1994)CrossRef
3.
go back to reference Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)MATHCrossRef Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)MATHCrossRef
4.
go back to reference LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef
5.
6.
7.
go back to reference Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)CrossRef Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)CrossRef
8.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings Advances in Neural Information Processing Systems, pp. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
9.
go back to reference Ren, S.Q., He, K.M., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)CrossRef Ren, S.Q., He, K.M., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)CrossRef
10.
go back to reference Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587. Columbus, Ohio, USA. IEEE (2014) Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587. Columbus, Ohio, USA. IEEE (2014)
11.
go back to reference Girshick, R.: Fast R-CNN. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp. 1440–1448. IEEE (2015) Girshick, R.: Fast R-CNN. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp. 1440–1448. IEEE (2015)
12.
go back to reference Hubel, D.H., Wiesel, T.N.: Receptive fields binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)CrossRef Hubel, D.H., Wiesel, T.N.: Receptive fields binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)CrossRef
13.
go back to reference LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
15.
go back to reference Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings Conference Computer Vision Pattern Recognition, pp. 1–9 (2015) Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings Conference Computer Vision Pattern Recognition, pp. 1–9 (2015)
16.
go back to reference He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
17.
go back to reference Guo, X., Chen, L., Shen, C.: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. In: Measurement: Journal of the International Measurement Confederation, vol. 93, pp. 490–502 (2016) Guo, X., Chen, L., Shen, C.: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. In: Measurement: Journal of the International Measurement Confederation, vol. 93, pp. 490–502 (2016)
18.
go back to reference Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D.J.: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 388, 154–170 (2017)CrossRef Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D.J.: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 388, 154–170 (2017)CrossRef
19.
go back to reference Ince, T., Kiranyaz, S., Eren, L., Askar, M., Gabbouj, M.: Real-time motor fault detection by 1-D convolutional neural networks. IEEE Trans. Industr. Electron. 63(11), 7067–7075 (2016)CrossRef Ince, T., Kiranyaz, S., Eren, L., Askar, M., Gabbouj, M.: Real-time motor fault detection by 1-D convolutional neural networks. IEEE Trans. Industr. Electron. 63(11), 7067–7075 (2016)CrossRef
20.
go back to reference Kiranyaz, S., Ince, T., Abdeljaber, O., et al.: 1-D convolutional neural networks for signal processing applications. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8360–8364. IEEE (2019) Kiranyaz, S., Ince, T., Abdeljaber, O., et al.: 1-D convolutional neural networks for signal processing applications. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8360–8364. IEEE (2019)
21.
go back to reference Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015) Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:​1502.​03167 (2015)
22.
go back to reference Yang, Y., Yu, D., Cheng, J.: A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM. Measurement 40(9–10), 943–950 (2007) Yang, Y., Yu, D., Cheng, J.: A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM. Measurement 40(9–10), 943–950 (2007)
23.
go back to reference Yang, J., Zhang, Y., Zhu, Y.: Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension. Mech. Syst. Signal Process. 21(5), 2012–2024 (2007)CrossRef Yang, J., Zhang, Y., Zhu, Y.: Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension. Mech. Syst. Signal Process. 21(5), 2012–2024 (2007)CrossRef
24.
go back to reference Yu, Y., Junsheng, C.: A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 294(1–2), 269–277 (2006)CrossRef Yu, Y., Junsheng, C.: A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J. Sound Vib. 294(1–2), 269–277 (2006)CrossRef
25.
go back to reference Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH
26.
go back to reference Kiranyaz, S., Ince, T., Gabbouj, M.: Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2015)CrossRef Kiranyaz, S., Ince, T., Gabbouj, M.: Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2015)CrossRef
27.
go back to reference Acharya, U.R., Oh, S.L., Hagiwara, Y., et al.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2018)CrossRef Acharya, U.R., Oh, S.L., Hagiwara, Y., et al.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2018)CrossRef
Metadata
Title
A Deep Learning Based Fault Detection Method for Rocket Launcher Electrical System
Authors
Huanghua Li
Zhidong Deng
Jianxin Zhang
Zhen Zhang
Xiaozhao Wang
Yongbao Li
Feng Li
Lizhong Xie
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-64580-9_27

Premium Partner